OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2003-2005 Tom Wu | |
3 * All Rights Reserved. | |
4 * | |
5 * Permission is hereby granted, free of charge, to any person obtaining | |
6 * a copy of this software and associated documentation files (the | |
7 * "Software"), to deal in the Software without restriction, including | |
8 * without limitation the rights to use, copy, modify, merge, publish, | |
9 * distribute, sublicense, and/or sell copies of the Software, and to | |
10 * permit persons to whom the Software is furnished to do so, subject to | |
11 * the following conditions: | |
12 * | |
13 * The above copyright notice and this permission notice shall be | |
14 * included in all copies or substantial portions of the Software. | |
15 * | |
16 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
17 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
18 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
19 * | |
20 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | |
21 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | |
22 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | |
23 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | |
24 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
25 * | |
26 * In addition, the following condition applies: | |
27 * | |
28 * All redistributions must retain an intact copy of this copyright notice | |
29 * and disclaimer. | |
30 */ | |
31 | |
32 | |
33 // The code has been adapted for use as a benchmark by Google. | |
34 var Crypto = new BenchmarkSuite('Crypto', 266181, [ | |
35 new Benchmark("Encrypt", encrypt), | |
36 new Benchmark("Decrypt", decrypt) | |
37 ]); | |
38 | |
39 | |
40 // Basic JavaScript BN library - subset useful for RSA encryption. | |
41 | |
42 // Bits per digit | |
43 var dbits; | |
44 var BI_DB; | |
45 var BI_DM; | |
46 var BI_DV; | |
47 | |
48 var BI_FP; | |
49 var BI_FV; | |
50 var BI_F1; | |
51 var BI_F2; | |
52 | |
53 // JavaScript engine analysis | |
54 var canary = 0xdeadbeefcafe; | |
55 var j_lm = ((canary&0xffffff)==0xefcafe); | |
56 | |
57 // (public) Constructor | |
58 function BigInteger(a,b,c) { | |
59 this.array = new Array(); | |
60 if(a != null) | |
61 if("number" == typeof a) this.fromNumber(a,b,c); | |
62 else if(b == null && "string" != typeof a) this.fromString(a,256); | |
63 else this.fromString(a,b); | |
64 } | |
65 | |
66 // return new, unset BigInteger | |
67 function nbi() { return new BigInteger(null); } | |
68 | |
69 // am: Compute w_j += (x*this_i), propagate carries, | |
70 // c is initial carry, returns final carry. | |
71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue | |
72 // We need to select the fastest one that works in this environment. | |
73 | |
74 // am1: use a single mult and divide to get the high bits, | |
75 // max digit bits should be 26 because | |
76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) | |
77 function am1(i,x,w,j,c,n) { | |
78 var this_array = this.array; | |
79 var w_array = w.array; | |
80 while(--n >= 0) { | |
81 var v = x*this_array[i++]+w_array[j]+c; | |
82 c = Math.floor(v/0x4000000); | |
83 w_array[j++] = v&0x3ffffff; | |
84 } | |
85 return c; | |
86 } | |
87 | |
88 // am2 avoids a big mult-and-extract completely. | |
89 // Max digit bits should be <= 30 because we do bitwise ops | |
90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | |
91 function am2(i,x,w,j,c,n) { | |
92 var this_array = this.array; | |
93 var w_array = w.array; | |
94 var xl = x&0x7fff, xh = x>>15; | |
95 while(--n >= 0) { | |
96 var l = this_array[i]&0x7fff; | |
97 var h = this_array[i++]>>15; | |
98 var m = xh*l+h*xl; | |
99 l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); | |
100 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | |
101 w_array[j++] = l&0x3fffffff; | |
102 } | |
103 return c; | |
104 } | |
105 | |
106 // Alternately, set max digit bits to 28 since some | |
107 // browsers slow down when dealing with 32-bit numbers. | |
108 function am3(i,x,w,j,c,n) { | |
109 var this_array = this.array; | |
110 var w_array = w.array; | |
111 | |
112 var xl = x&0x3fff, xh = x>>14; | |
113 while(--n >= 0) { | |
114 var l = this_array[i]&0x3fff; | |
115 var h = this_array[i++]>>14; | |
116 var m = xh*l+h*xl; | |
117 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; | |
118 c = (l>>28)+(m>>14)+xh*h; | |
119 w_array[j++] = l&0xfffffff; | |
120 } | |
121 return c; | |
122 } | |
123 | |
124 // This is tailored to VMs with 2-bit tagging. It makes sure | |
125 // that all the computations stay within the 29 bits available. | |
126 function am4(i,x,w,j,c,n) { | |
127 var this_array = this.array; | |
128 var w_array = w.array; | |
129 | |
130 var xl = x&0x1fff, xh = x>>13; | |
131 while(--n >= 0) { | |
132 var l = this_array[i]&0x1fff; | |
133 var h = this_array[i++]>>13; | |
134 var m = xh*l+h*xl; | |
135 l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; | |
136 c = (l>>26)+(m>>13)+xh*h; | |
137 w_array[j++] = l&0x3ffffff; | |
138 } | |
139 return c; | |
140 } | |
141 | |
142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8. | |
143 // Kestrel (Opera 9.5) gets its best result with am4/26. | |
144 // IE7 does 9% better with am3/28 than with am4/26. | |
145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26. | |
146 | |
147 setupEngine = function(fn, bits) { | |
148 BigInteger.prototype.am = fn; | |
149 dbits = bits; | |
150 | |
151 BI_DB = dbits; | |
152 BI_DM = ((1<<dbits)-1); | |
153 BI_DV = (1<<dbits); | |
154 | |
155 BI_FP = 52; | |
156 BI_FV = Math.pow(2,BI_FP); | |
157 BI_F1 = BI_FP-dbits; | |
158 BI_F2 = 2*dbits-BI_FP; | |
159 } | |
160 | |
161 | |
162 // Digit conversions | |
163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
164 var BI_RC = new Array(); | |
165 var rr,vv; | |
166 rr = "0".charCodeAt(0); | |
167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | |
168 rr = "a".charCodeAt(0); | |
169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
170 rr = "A".charCodeAt(0); | |
171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
172 | |
173 function int2char(n) { return BI_RM.charAt(n); } | |
174 function intAt(s,i) { | |
175 var c = BI_RC[s.charCodeAt(i)]; | |
176 return (c==null)?-1:c; | |
177 } | |
178 | |
179 // (protected) copy this to r | |
180 function bnpCopyTo(r) { | |
181 var this_array = this.array; | |
182 var r_array = r.array; | |
183 | |
184 for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; | |
185 r.t = this.t; | |
186 r.s = this.s; | |
187 } | |
188 | |
189 // (protected) set from integer value x, -DV <= x < DV | |
190 function bnpFromInt(x) { | |
191 var this_array = this.array; | |
192 this.t = 1; | |
193 this.s = (x<0)?-1:0; | |
194 if(x > 0) this_array[0] = x; | |
195 else if(x < -1) this_array[0] = x+DV; | |
196 else this.t = 0; | |
197 } | |
198 | |
199 // return bigint initialized to value | |
200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | |
201 | |
202 // (protected) set from string and radix | |
203 function bnpFromString(s,b) { | |
204 var this_array = this.array; | |
205 var k; | |
206 if(b == 16) k = 4; | |
207 else if(b == 8) k = 3; | |
208 else if(b == 256) k = 8; // byte array | |
209 else if(b == 2) k = 1; | |
210 else if(b == 32) k = 5; | |
211 else if(b == 4) k = 2; | |
212 else { this.fromRadix(s,b); return; } | |
213 this.t = 0; | |
214 this.s = 0; | |
215 var i = s.length, mi = false, sh = 0; | |
216 while(--i >= 0) { | |
217 var x = (k==8)?s[i]&0xff:intAt(s,i); | |
218 if(x < 0) { | |
219 if(s.charAt(i) == "-") mi = true; | |
220 continue; | |
221 } | |
222 mi = false; | |
223 if(sh == 0) | |
224 this_array[this.t++] = x; | |
225 else if(sh+k > BI_DB) { | |
226 this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; | |
227 this_array[this.t++] = (x>>(BI_DB-sh)); | |
228 } | |
229 else | |
230 this_array[this.t-1] |= x<<sh; | |
231 sh += k; | |
232 if(sh >= BI_DB) sh -= BI_DB; | |
233 } | |
234 if(k == 8 && (s[0]&0x80) != 0) { | |
235 this.s = -1; | |
236 if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; | |
237 } | |
238 this.clamp(); | |
239 if(mi) BigInteger.ZERO.subTo(this,this); | |
240 } | |
241 | |
242 // (protected) clamp off excess high words | |
243 function bnpClamp() { | |
244 var this_array = this.array; | |
245 var c = this.s&BI_DM; | |
246 while(this.t > 0 && this_array[this.t-1] == c) --this.t; | |
247 } | |
248 | |
249 // (public) return string representation in given radix | |
250 function bnToString(b) { | |
251 var this_array = this.array; | |
252 if(this.s < 0) return "-"+this.negate().toString(b); | |
253 var k; | |
254 if(b == 16) k = 4; | |
255 else if(b == 8) k = 3; | |
256 else if(b == 2) k = 1; | |
257 else if(b == 32) k = 5; | |
258 else if(b == 4) k = 2; | |
259 else return this.toRadix(b); | |
260 var km = (1<<k)-1, d, m = false, r = "", i = this.t; | |
261 var p = BI_DB-(i*BI_DB)%k; | |
262 if(i-- > 0) { | |
263 if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } | |
264 while(i >= 0) { | |
265 if(p < k) { | |
266 d = (this_array[i]&((1<<p)-1))<<(k-p); | |
267 d |= this_array[--i]>>(p+=BI_DB-k); | |
268 } | |
269 else { | |
270 d = (this_array[i]>>(p-=k))&km; | |
271 if(p <= 0) { p += BI_DB; --i; } | |
272 } | |
273 if(d > 0) m = true; | |
274 if(m) r += int2char(d); | |
275 } | |
276 } | |
277 return m?r:"0"; | |
278 } | |
279 | |
280 // (public) -this | |
281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | |
282 | |
283 // (public) |this| | |
284 function bnAbs() { return (this.s<0)?this.negate():this; } | |
285 | |
286 // (public) return + if this > a, - if this < a, 0 if equal | |
287 function bnCompareTo(a) { | |
288 var this_array = this.array; | |
289 var a_array = a.array; | |
290 | |
291 var r = this.s-a.s; | |
292 if(r != 0) return r; | |
293 var i = this.t; | |
294 r = i-a.t; | |
295 if(r != 0) return r; | |
296 while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; | |
297 return 0; | |
298 } | |
299 | |
300 // returns bit length of the integer x | |
301 function nbits(x) { | |
302 var r = 1, t; | |
303 if((t=x>>>16) != 0) { x = t; r += 16; } | |
304 if((t=x>>8) != 0) { x = t; r += 8; } | |
305 if((t=x>>4) != 0) { x = t; r += 4; } | |
306 if((t=x>>2) != 0) { x = t; r += 2; } | |
307 if((t=x>>1) != 0) { x = t; r += 1; } | |
308 return r; | |
309 } | |
310 | |
311 // (public) return the number of bits in "this" | |
312 function bnBitLength() { | |
313 var this_array = this.array; | |
314 if(this.t <= 0) return 0; | |
315 return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); | |
316 } | |
317 | |
318 // (protected) r = this << n*DB | |
319 function bnpDLShiftTo(n,r) { | |
320 var this_array = this.array; | |
321 var r_array = r.array; | |
322 var i; | |
323 for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; | |
324 for(i = n-1; i >= 0; --i) r_array[i] = 0; | |
325 r.t = this.t+n; | |
326 r.s = this.s; | |
327 } | |
328 | |
329 // (protected) r = this >> n*DB | |
330 function bnpDRShiftTo(n,r) { | |
331 var this_array = this.array; | |
332 var r_array = r.array; | |
333 for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; | |
334 r.t = Math.max(this.t-n,0); | |
335 r.s = this.s; | |
336 } | |
337 | |
338 // (protected) r = this << n | |
339 function bnpLShiftTo(n,r) { | |
340 var this_array = this.array; | |
341 var r_array = r.array; | |
342 var bs = n%BI_DB; | |
343 var cbs = BI_DB-bs; | |
344 var bm = (1<<cbs)-1; | |
345 var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; | |
346 for(i = this.t-1; i >= 0; --i) { | |
347 r_array[i+ds+1] = (this_array[i]>>cbs)|c; | |
348 c = (this_array[i]&bm)<<bs; | |
349 } | |
350 for(i = ds-1; i >= 0; --i) r_array[i] = 0; | |
351 r_array[ds] = c; | |
352 r.t = this.t+ds+1; | |
353 r.s = this.s; | |
354 r.clamp(); | |
355 } | |
356 | |
357 // (protected) r = this >> n | |
358 function bnpRShiftTo(n,r) { | |
359 var this_array = this.array; | |
360 var r_array = r.array; | |
361 r.s = this.s; | |
362 var ds = Math.floor(n/BI_DB); | |
363 if(ds >= this.t) { r.t = 0; return; } | |
364 var bs = n%BI_DB; | |
365 var cbs = BI_DB-bs; | |
366 var bm = (1<<bs)-1; | |
367 r_array[0] = this_array[ds]>>bs; | |
368 for(var i = ds+1; i < this.t; ++i) { | |
369 r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; | |
370 r_array[i-ds] = this_array[i]>>bs; | |
371 } | |
372 if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; | |
373 r.t = this.t-ds; | |
374 r.clamp(); | |
375 } | |
376 | |
377 // (protected) r = this - a | |
378 function bnpSubTo(a,r) { | |
379 var this_array = this.array; | |
380 var r_array = r.array; | |
381 var a_array = a.array; | |
382 var i = 0, c = 0, m = Math.min(a.t,this.t); | |
383 while(i < m) { | |
384 c += this_array[i]-a_array[i]; | |
385 r_array[i++] = c&BI_DM; | |
386 c >>= BI_DB; | |
387 } | |
388 if(a.t < this.t) { | |
389 c -= a.s; | |
390 while(i < this.t) { | |
391 c += this_array[i]; | |
392 r_array[i++] = c&BI_DM; | |
393 c >>= BI_DB; | |
394 } | |
395 c += this.s; | |
396 } | |
397 else { | |
398 c += this.s; | |
399 while(i < a.t) { | |
400 c -= a_array[i]; | |
401 r_array[i++] = c&BI_DM; | |
402 c >>= BI_DB; | |
403 } | |
404 c -= a.s; | |
405 } | |
406 r.s = (c<0)?-1:0; | |
407 if(c < -1) r_array[i++] = BI_DV+c; | |
408 else if(c > 0) r_array[i++] = c; | |
409 r.t = i; | |
410 r.clamp(); | |
411 } | |
412 | |
413 // (protected) r = this * a, r != this,a (HAC 14.12) | |
414 // "this" should be the larger one if appropriate. | |
415 function bnpMultiplyTo(a,r) { | |
416 var this_array = this.array; | |
417 var r_array = r.array; | |
418 var x = this.abs(), y = a.abs(); | |
419 var y_array = y.array; | |
420 | |
421 var i = x.t; | |
422 r.t = i+y.t; | |
423 while(--i >= 0) r_array[i] = 0; | |
424 for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); | |
425 r.s = 0; | |
426 r.clamp(); | |
427 if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | |
428 } | |
429 | |
430 // (protected) r = this^2, r != this (HAC 14.16) | |
431 function bnpSquareTo(r) { | |
432 var x = this.abs(); | |
433 var x_array = x.array; | |
434 var r_array = r.array; | |
435 | |
436 var i = r.t = 2*x.t; | |
437 while(--i >= 0) r_array[i] = 0; | |
438 for(i = 0; i < x.t-1; ++i) { | |
439 var c = x.am(i,x_array[i],r,2*i,0,1); | |
440 if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { | |
441 r_array[i+x.t] -= BI_DV; | |
442 r_array[i+x.t+1] = 1; | |
443 } | |
444 } | |
445 if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); | |
446 r.s = 0; | |
447 r.clamp(); | |
448 } | |
449 | |
450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | |
451 // r != q, this != m. q or r may be null. | |
452 function bnpDivRemTo(m,q,r) { | |
453 var pm = m.abs(); | |
454 if(pm.t <= 0) return; | |
455 var pt = this.abs(); | |
456 if(pt.t < pm.t) { | |
457 if(q != null) q.fromInt(0); | |
458 if(r != null) this.copyTo(r); | |
459 return; | |
460 } | |
461 if(r == null) r = nbi(); | |
462 var y = nbi(), ts = this.s, ms = m.s; | |
463 var pm_array = pm.array; | |
464 var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus | |
465 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } | |
466 else { pm.copyTo(y); pt.copyTo(r); } | |
467 var ys = y.t; | |
468 | |
469 var y_array = y.array; | |
470 var y0 = y_array[ys-1]; | |
471 if(y0 == 0) return; | |
472 var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); | |
473 var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; | |
474 var i = r.t, j = i-ys, t = (q==null)?nbi():q; | |
475 y.dlShiftTo(j,t); | |
476 | |
477 var r_array = r.array; | |
478 if(r.compareTo(t) >= 0) { | |
479 r_array[r.t++] = 1; | |
480 r.subTo(t,r); | |
481 } | |
482 BigInteger.ONE.dlShiftTo(ys,t); | |
483 t.subTo(y,y); // "negative" y so we can replace sub with am later | |
484 while(y.t < ys) y_array[y.t++] = 0; | |
485 while(--j >= 0) { | |
486 // Estimate quotient digit | |
487 var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*
d2); | |
488 if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out | |
489 y.dlShiftTo(j,t); | |
490 r.subTo(t,r); | |
491 while(r_array[i] < --qd) r.subTo(t,r); | |
492 } | |
493 } | |
494 if(q != null) { | |
495 r.drShiftTo(ys,q); | |
496 if(ts != ms) BigInteger.ZERO.subTo(q,q); | |
497 } | |
498 r.t = ys; | |
499 r.clamp(); | |
500 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder | |
501 if(ts < 0) BigInteger.ZERO.subTo(r,r); | |
502 } | |
503 | |
504 // (public) this mod a | |
505 function bnMod(a) { | |
506 var r = nbi(); | |
507 this.abs().divRemTo(a,null,r); | |
508 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | |
509 return r; | |
510 } | |
511 | |
512 // Modular reduction using "classic" algorithm | |
513 function Classic(m) { this.m = m; } | |
514 function cConvert(x) { | |
515 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | |
516 else return x; | |
517 } | |
518 function cRevert(x) { return x; } | |
519 function cReduce(x) { x.divRemTo(this.m,null,x); } | |
520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
522 | |
523 Classic.prototype.convert = cConvert; | |
524 Classic.prototype.revert = cRevert; | |
525 Classic.prototype.reduce = cReduce; | |
526 Classic.prototype.mulTo = cMulTo; | |
527 Classic.prototype.sqrTo = cSqrTo; | |
528 | |
529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction | |
530 // justification: | |
531 // xy == 1 (mod m) | |
532 // xy = 1+km | |
533 // xy(2-xy) = (1+km)(1-km) | |
534 // x[y(2-xy)] = 1-k^2m^2 | |
535 // x[y(2-xy)] == 1 (mod m^2) | |
536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | |
537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | |
538 // JS multiply "overflows" differently from C/C++, so care is needed here. | |
539 function bnpInvDigit() { | |
540 var this_array = this.array; | |
541 if(this.t < 1) return 0; | |
542 var x = this_array[0]; | |
543 if((x&1) == 0) return 0; | |
544 var y = x&3; // y == 1/x mod 2^2 | |
545 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 | |
546 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 | |
547 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 | |
548 // last step - calculate inverse mod DV directly; | |
549 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | |
550 y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits | |
551 // we really want the negative inverse, and -DV < y < DV | |
552 return (y>0)?BI_DV-y:-y; | |
553 } | |
554 | |
555 // Montgomery reduction | |
556 function Montgomery(m) { | |
557 this.m = m; | |
558 this.mp = m.invDigit(); | |
559 this.mpl = this.mp&0x7fff; | |
560 this.mph = this.mp>>15; | |
561 this.um = (1<<(BI_DB-15))-1; | |
562 this.mt2 = 2*m.t; | |
563 } | |
564 | |
565 // xR mod m | |
566 function montConvert(x) { | |
567 var r = nbi(); | |
568 x.abs().dlShiftTo(this.m.t,r); | |
569 r.divRemTo(this.m,null,r); | |
570 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | |
571 return r; | |
572 } | |
573 | |
574 // x/R mod m | |
575 function montRevert(x) { | |
576 var r = nbi(); | |
577 x.copyTo(r); | |
578 this.reduce(r); | |
579 return r; | |
580 } | |
581 | |
582 // x = x/R mod m (HAC 14.32) | |
583 function montReduce(x) { | |
584 var x_array = x.array; | |
585 while(x.t <= this.mt2) // pad x so am has enough room later | |
586 x_array[x.t++] = 0; | |
587 for(var i = 0; i < this.m.t; ++i) { | |
588 // faster way of calculating u0 = x[i]*mp mod DV | |
589 var j = x_array[i]&0x7fff; | |
590 var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))
&BI_DM; | |
591 // use am to combine the multiply-shift-add into one call | |
592 j = i+this.m.t; | |
593 x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); | |
594 // propagate carry | |
595 while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } | |
596 } | |
597 x.clamp(); | |
598 x.drShiftTo(this.m.t,x); | |
599 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
600 } | |
601 | |
602 // r = "x^2/R mod m"; x != r | |
603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
604 | |
605 // r = "xy/R mod m"; x,y != r | |
606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
607 | |
608 Montgomery.prototype.convert = montConvert; | |
609 Montgomery.prototype.revert = montRevert; | |
610 Montgomery.prototype.reduce = montReduce; | |
611 Montgomery.prototype.mulTo = montMulTo; | |
612 Montgomery.prototype.sqrTo = montSqrTo; | |
613 | |
614 // (protected) true iff this is even | |
615 function bnpIsEven() { | |
616 var this_array = this.array; | |
617 return ((this.t>0)?(this_array[0]&1):this.s) == 0; | |
618 } | |
619 | |
620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | |
621 function bnpExp(e,z) { | |
622 if(e > 0xffffffff || e < 1) return BigInteger.ONE; | |
623 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | |
624 g.copyTo(r); | |
625 while(--i >= 0) { | |
626 z.sqrTo(r,r2); | |
627 if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | |
628 else { var t = r; r = r2; r2 = t; } | |
629 } | |
630 return z.revert(r); | |
631 } | |
632 | |
633 // (public) this^e % m, 0 <= e < 2^32 | |
634 function bnModPowInt(e,m) { | |
635 var z; | |
636 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | |
637 return this.exp(e,z); | |
638 } | |
639 | |
640 // protected | |
641 BigInteger.prototype.copyTo = bnpCopyTo; | |
642 BigInteger.prototype.fromInt = bnpFromInt; | |
643 BigInteger.prototype.fromString = bnpFromString; | |
644 BigInteger.prototype.clamp = bnpClamp; | |
645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | |
646 BigInteger.prototype.drShiftTo = bnpDRShiftTo; | |
647 BigInteger.prototype.lShiftTo = bnpLShiftTo; | |
648 BigInteger.prototype.rShiftTo = bnpRShiftTo; | |
649 BigInteger.prototype.subTo = bnpSubTo; | |
650 BigInteger.prototype.multiplyTo = bnpMultiplyTo; | |
651 BigInteger.prototype.squareTo = bnpSquareTo; | |
652 BigInteger.prototype.divRemTo = bnpDivRemTo; | |
653 BigInteger.prototype.invDigit = bnpInvDigit; | |
654 BigInteger.prototype.isEven = bnpIsEven; | |
655 BigInteger.prototype.exp = bnpExp; | |
656 | |
657 // public | |
658 BigInteger.prototype.toString = bnToString; | |
659 BigInteger.prototype.negate = bnNegate; | |
660 BigInteger.prototype.abs = bnAbs; | |
661 BigInteger.prototype.compareTo = bnCompareTo; | |
662 BigInteger.prototype.bitLength = bnBitLength; | |
663 BigInteger.prototype.mod = bnMod; | |
664 BigInteger.prototype.modPowInt = bnModPowInt; | |
665 | |
666 // "constants" | |
667 BigInteger.ZERO = nbv(0); | |
668 BigInteger.ONE = nbv(1); | |
669 // Copyright (c) 2005 Tom Wu | |
670 // All Rights Reserved. | |
671 // See "LICENSE" for details. | |
672 | |
673 // Extended JavaScript BN functions, required for RSA private ops. | |
674 | |
675 // (public) | |
676 function bnClone() { var r = nbi(); this.copyTo(r); return r; } | |
677 | |
678 // (public) return value as integer | |
679 function bnIntValue() { | |
680 var this_array = this.array; | |
681 if(this.s < 0) { | |
682 if(this.t == 1) return this_array[0]-BI_DV; | |
683 else if(this.t == 0) return -1; | |
684 } | |
685 else if(this.t == 1) return this_array[0]; | |
686 else if(this.t == 0) return 0; | |
687 // assumes 16 < DB < 32 | |
688 return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; | |
689 } | |
690 | |
691 // (public) return value as byte | |
692 function bnByteValue() { | |
693 var this_array = this.array; | |
694 return (this.t==0)?this.s:(this_array[0]<<24)>>24; | |
695 } | |
696 | |
697 // (public) return value as short (assumes DB>=16) | |
698 function bnShortValue() { | |
699 var this_array = this.array; | |
700 return (this.t==0)?this.s:(this_array[0]<<16)>>16; | |
701 } | |
702 | |
703 // (protected) return x s.t. r^x < DV | |
704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } | |
705 | |
706 // (public) 0 if this == 0, 1 if this > 0 | |
707 function bnSigNum() { | |
708 var this_array = this.array; | |
709 if(this.s < 0) return -1; | |
710 else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; | |
711 else return 1; | |
712 } | |
713 | |
714 // (protected) convert to radix string | |
715 function bnpToRadix(b) { | |
716 if(b == null) b = 10; | |
717 if(this.signum() == 0 || b < 2 || b > 36) return "0"; | |
718 var cs = this.chunkSize(b); | |
719 var a = Math.pow(b,cs); | |
720 var d = nbv(a), y = nbi(), z = nbi(), r = ""; | |
721 this.divRemTo(d,y,z); | |
722 while(y.signum() > 0) { | |
723 r = (a+z.intValue()).toString(b).substr(1) + r; | |
724 y.divRemTo(d,y,z); | |
725 } | |
726 return z.intValue().toString(b) + r; | |
727 } | |
728 | |
729 // (protected) convert from radix string | |
730 function bnpFromRadix(s,b) { | |
731 this.fromInt(0); | |
732 if(b == null) b = 10; | |
733 var cs = this.chunkSize(b); | |
734 var d = Math.pow(b,cs), mi = false, j = 0, w = 0; | |
735 for(var i = 0; i < s.length; ++i) { | |
736 var x = intAt(s,i); | |
737 if(x < 0) { | |
738 if(s.charAt(i) == "-" && this.signum() == 0) mi = true; | |
739 continue; | |
740 } | |
741 w = b*w+x; | |
742 if(++j >= cs) { | |
743 this.dMultiply(d); | |
744 this.dAddOffset(w,0); | |
745 j = 0; | |
746 w = 0; | |
747 } | |
748 } | |
749 if(j > 0) { | |
750 this.dMultiply(Math.pow(b,j)); | |
751 this.dAddOffset(w,0); | |
752 } | |
753 if(mi) BigInteger.ZERO.subTo(this,this); | |
754 } | |
755 | |
756 // (protected) alternate constructor | |
757 function bnpFromNumber(a,b,c) { | |
758 if("number" == typeof b) { | |
759 // new BigInteger(int,int,RNG) | |
760 if(a < 2) this.fromInt(1); | |
761 else { | |
762 this.fromNumber(a,c); | |
763 if(!this.testBit(a-1)) // force MSB set | |
764 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); | |
765 if(this.isEven()) this.dAddOffset(1,0); // force odd | |
766 while(!this.isProbablePrime(b)) { | |
767 this.dAddOffset(2,0); | |
768 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); | |
769 } | |
770 } | |
771 } | |
772 else { | |
773 // new BigInteger(int,RNG) | |
774 var x = new Array(), t = a&7; | |
775 x.length = (a>>3)+1; | |
776 b.nextBytes(x); | |
777 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; | |
778 this.fromString(x,256); | |
779 } | |
780 } | |
781 | |
782 // (public) convert to bigendian byte array | |
783 function bnToByteArray() { | |
784 var this_array = this.array; | |
785 var i = this.t, r = new Array(); | |
786 r[0] = this.s; | |
787 var p = BI_DB-(i*BI_DB)%8, d, k = 0; | |
788 if(i-- > 0) { | |
789 if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) | |
790 r[k++] = d|(this.s<<(BI_DB-p)); | |
791 while(i >= 0) { | |
792 if(p < 8) { | |
793 d = (this_array[i]&((1<<p)-1))<<(8-p); | |
794 d |= this_array[--i]>>(p+=BI_DB-8); | |
795 } | |
796 else { | |
797 d = (this_array[i]>>(p-=8))&0xff; | |
798 if(p <= 0) { p += BI_DB; --i; } | |
799 } | |
800 if((d&0x80) != 0) d |= -256; | |
801 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; | |
802 if(k > 0 || d != this.s) r[k++] = d; | |
803 } | |
804 } | |
805 return r; | |
806 } | |
807 | |
808 function bnEquals(a) { return(this.compareTo(a)==0); } | |
809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; } | |
810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; } | |
811 | |
812 // (protected) r = this op a (bitwise) | |
813 function bnpBitwiseTo(a,op,r) { | |
814 var this_array = this.array; | |
815 var a_array = a.array; | |
816 var r_array = r.array; | |
817 var i, f, m = Math.min(a.t,this.t); | |
818 for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); | |
819 if(a.t < this.t) { | |
820 f = a.s&BI_DM; | |
821 for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); | |
822 r.t = this.t; | |
823 } | |
824 else { | |
825 f = this.s&BI_DM; | |
826 for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); | |
827 r.t = a.t; | |
828 } | |
829 r.s = op(this.s,a.s); | |
830 r.clamp(); | |
831 } | |
832 | |
833 // (public) this & a | |
834 function op_and(x,y) { return x&y; } | |
835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } | |
836 | |
837 // (public) this | a | |
838 function op_or(x,y) { return x|y; } | |
839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } | |
840 | |
841 // (public) this ^ a | |
842 function op_xor(x,y) { return x^y; } | |
843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } | |
844 | |
845 // (public) this & ~a | |
846 function op_andnot(x,y) { return x&~y; } | |
847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } | |
848 | |
849 // (public) ~this | |
850 function bnNot() { | |
851 var this_array = this.array; | |
852 var r = nbi(); | |
853 var r_array = r.array; | |
854 | |
855 for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; | |
856 r.t = this.t; | |
857 r.s = ~this.s; | |
858 return r; | |
859 } | |
860 | |
861 // (public) this << n | |
862 function bnShiftLeft(n) { | |
863 var r = nbi(); | |
864 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); | |
865 return r; | |
866 } | |
867 | |
868 // (public) this >> n | |
869 function bnShiftRight(n) { | |
870 var r = nbi(); | |
871 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); | |
872 return r; | |
873 } | |
874 | |
875 // return index of lowest 1-bit in x, x < 2^31 | |
876 function lbit(x) { | |
877 if(x == 0) return -1; | |
878 var r = 0; | |
879 if((x&0xffff) == 0) { x >>= 16; r += 16; } | |
880 if((x&0xff) == 0) { x >>= 8; r += 8; } | |
881 if((x&0xf) == 0) { x >>= 4; r += 4; } | |
882 if((x&3) == 0) { x >>= 2; r += 2; } | |
883 if((x&1) == 0) ++r; | |
884 return r; | |
885 } | |
886 | |
887 // (public) returns index of lowest 1-bit (or -1 if none) | |
888 function bnGetLowestSetBit() { | |
889 var this_array = this.array; | |
890 for(var i = 0; i < this.t; ++i) | |
891 if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); | |
892 if(this.s < 0) return this.t*BI_DB; | |
893 return -1; | |
894 } | |
895 | |
896 // return number of 1 bits in x | |
897 function cbit(x) { | |
898 var r = 0; | |
899 while(x != 0) { x &= x-1; ++r; } | |
900 return r; | |
901 } | |
902 | |
903 // (public) return number of set bits | |
904 function bnBitCount() { | |
905 var r = 0, x = this.s&BI_DM; | |
906 for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); | |
907 return r; | |
908 } | |
909 | |
910 // (public) true iff nth bit is set | |
911 function bnTestBit(n) { | |
912 var this_array = this.array; | |
913 var j = Math.floor(n/BI_DB); | |
914 if(j >= this.t) return(this.s!=0); | |
915 return((this_array[j]&(1<<(n%BI_DB)))!=0); | |
916 } | |
917 | |
918 // (protected) this op (1<<n) | |
919 function bnpChangeBit(n,op) { | |
920 var r = BigInteger.ONE.shiftLeft(n); | |
921 this.bitwiseTo(r,op,r); | |
922 return r; | |
923 } | |
924 | |
925 // (public) this | (1<<n) | |
926 function bnSetBit(n) { return this.changeBit(n,op_or); } | |
927 | |
928 // (public) this & ~(1<<n) | |
929 function bnClearBit(n) { return this.changeBit(n,op_andnot); } | |
930 | |
931 // (public) this ^ (1<<n) | |
932 function bnFlipBit(n) { return this.changeBit(n,op_xor); } | |
933 | |
934 // (protected) r = this + a | |
935 function bnpAddTo(a,r) { | |
936 var this_array = this.array; | |
937 var a_array = a.array; | |
938 var r_array = r.array; | |
939 var i = 0, c = 0, m = Math.min(a.t,this.t); | |
940 while(i < m) { | |
941 c += this_array[i]+a_array[i]; | |
942 r_array[i++] = c&BI_DM; | |
943 c >>= BI_DB; | |
944 } | |
945 if(a.t < this.t) { | |
946 c += a.s; | |
947 while(i < this.t) { | |
948 c += this_array[i]; | |
949 r_array[i++] = c&BI_DM; | |
950 c >>= BI_DB; | |
951 } | |
952 c += this.s; | |
953 } | |
954 else { | |
955 c += this.s; | |
956 while(i < a.t) { | |
957 c += a_array[i]; | |
958 r_array[i++] = c&BI_DM; | |
959 c >>= BI_DB; | |
960 } | |
961 c += a.s; | |
962 } | |
963 r.s = (c<0)?-1:0; | |
964 if(c > 0) r_array[i++] = c; | |
965 else if(c < -1) r_array[i++] = BI_DV+c; | |
966 r.t = i; | |
967 r.clamp(); | |
968 } | |
969 | |
970 // (public) this + a | |
971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } | |
972 | |
973 // (public) this - a | |
974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } | |
975 | |
976 // (public) this * a | |
977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } | |
978 | |
979 // (public) this / a | |
980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } | |
981 | |
982 // (public) this % a | |
983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } | |
984 | |
985 // (public) [this/a,this%a] | |
986 function bnDivideAndRemainder(a) { | |
987 var q = nbi(), r = nbi(); | |
988 this.divRemTo(a,q,r); | |
989 return new Array(q,r); | |
990 } | |
991 | |
992 // (protected) this *= n, this >= 0, 1 < n < DV | |
993 function bnpDMultiply(n) { | |
994 var this_array = this.array; | |
995 this_array[this.t] = this.am(0,n-1,this,0,0,this.t); | |
996 ++this.t; | |
997 this.clamp(); | |
998 } | |
999 | |
1000 // (protected) this += n << w words, this >= 0 | |
1001 function bnpDAddOffset(n,w) { | |
1002 var this_array = this.array; | |
1003 while(this.t <= w) this_array[this.t++] = 0; | |
1004 this_array[w] += n; | |
1005 while(this_array[w] >= BI_DV) { | |
1006 this_array[w] -= BI_DV; | |
1007 if(++w >= this.t) this_array[this.t++] = 0; | |
1008 ++this_array[w]; | |
1009 } | |
1010 } | |
1011 | |
1012 // A "null" reducer | |
1013 function NullExp() {} | |
1014 function nNop(x) { return x; } | |
1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); } | |
1016 function nSqrTo(x,r) { x.squareTo(r); } | |
1017 | |
1018 NullExp.prototype.convert = nNop; | |
1019 NullExp.prototype.revert = nNop; | |
1020 NullExp.prototype.mulTo = nMulTo; | |
1021 NullExp.prototype.sqrTo = nSqrTo; | |
1022 | |
1023 // (public) this^e | |
1024 function bnPow(e) { return this.exp(e,new NullExp()); } | |
1025 | |
1026 // (protected) r = lower n words of "this * a", a.t <= n | |
1027 // "this" should be the larger one if appropriate. | |
1028 function bnpMultiplyLowerTo(a,n,r) { | |
1029 var r_array = r.array; | |
1030 var a_array = a.array; | |
1031 var i = Math.min(this.t+a.t,n); | |
1032 r.s = 0; // assumes a,this >= 0 | |
1033 r.t = i; | |
1034 while(i > 0) r_array[--i] = 0; | |
1035 var j; | |
1036 for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0
,this.t); | |
1037 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); | |
1038 r.clamp(); | |
1039 } | |
1040 | |
1041 // (protected) r = "this * a" without lower n words, n > 0 | |
1042 // "this" should be the larger one if appropriate. | |
1043 function bnpMultiplyUpperTo(a,n,r) { | |
1044 var r_array = r.array; | |
1045 var a_array = a.array; | |
1046 --n; | |
1047 var i = r.t = this.t+a.t-n; | |
1048 r.s = 0; // assumes a,this >= 0 | |
1049 while(--i >= 0) r_array[i] = 0; | |
1050 for(i = Math.max(n-this.t,0); i < a.t; ++i) | |
1051 r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); | |
1052 r.clamp(); | |
1053 r.drShiftTo(1,r); | |
1054 } | |
1055 | |
1056 // Barrett modular reduction | |
1057 function Barrett(m) { | |
1058 // setup Barrett | |
1059 this.r2 = nbi(); | |
1060 this.q3 = nbi(); | |
1061 BigInteger.ONE.dlShiftTo(2*m.t,this.r2); | |
1062 this.mu = this.r2.divide(m); | |
1063 this.m = m; | |
1064 } | |
1065 | |
1066 function barrettConvert(x) { | |
1067 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); | |
1068 else if(x.compareTo(this.m) < 0) return x; | |
1069 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } | |
1070 } | |
1071 | |
1072 function barrettRevert(x) { return x; } | |
1073 | |
1074 // x = x mod m (HAC 14.42) | |
1075 function barrettReduce(x) { | |
1076 x.drShiftTo(this.m.t-1,this.r2); | |
1077 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } | |
1078 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); | |
1079 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); | |
1080 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); | |
1081 x.subTo(this.r2,x); | |
1082 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
1083 } | |
1084 | |
1085 // r = x^2 mod m; x != r | |
1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
1087 | |
1088 // r = x*y mod m; x,y != r | |
1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
1090 | |
1091 Barrett.prototype.convert = barrettConvert; | |
1092 Barrett.prototype.revert = barrettRevert; | |
1093 Barrett.prototype.reduce = barrettReduce; | |
1094 Barrett.prototype.mulTo = barrettMulTo; | |
1095 Barrett.prototype.sqrTo = barrettSqrTo; | |
1096 | |
1097 // (public) this^e % m (HAC 14.85) | |
1098 function bnModPow(e,m) { | |
1099 var e_array = e.array; | |
1100 var i = e.bitLength(), k, r = nbv(1), z; | |
1101 if(i <= 0) return r; | |
1102 else if(i < 18) k = 1; | |
1103 else if(i < 48) k = 3; | |
1104 else if(i < 144) k = 4; | |
1105 else if(i < 768) k = 5; | |
1106 else k = 6; | |
1107 if(i < 8) | |
1108 z = new Classic(m); | |
1109 else if(m.isEven()) | |
1110 z = new Barrett(m); | |
1111 else | |
1112 z = new Montgomery(m); | |
1113 | |
1114 // precomputation | |
1115 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; | |
1116 g[1] = z.convert(this); | |
1117 if(k > 1) { | |
1118 var g2 = nbi(); | |
1119 z.sqrTo(g[1],g2); | |
1120 while(n <= km) { | |
1121 g[n] = nbi(); | |
1122 z.mulTo(g2,g[n-2],g[n]); | |
1123 n += 2; | |
1124 } | |
1125 } | |
1126 | |
1127 var j = e.t-1, w, is1 = true, r2 = nbi(), t; | |
1128 i = nbits(e_array[j])-1; | |
1129 while(j >= 0) { | |
1130 if(i >= k1) w = (e_array[j]>>(i-k1))&km; | |
1131 else { | |
1132 w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); | |
1133 if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); | |
1134 } | |
1135 | |
1136 n = k; | |
1137 while((w&1) == 0) { w >>= 1; --n; } | |
1138 if((i -= n) < 0) { i += BI_DB; --j; } | |
1139 if(is1) { // ret == 1, don't bother squaring or multiplying it | |
1140 g[w].copyTo(r); | |
1141 is1 = false; | |
1142 } | |
1143 else { | |
1144 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } | |
1145 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } | |
1146 z.mulTo(r2,g[w],r); | |
1147 } | |
1148 | |
1149 while(j >= 0 && (e_array[j]&(1<<i)) == 0) { | |
1150 z.sqrTo(r,r2); t = r; r = r2; r2 = t; | |
1151 if(--i < 0) { i = BI_DB-1; --j; } | |
1152 } | |
1153 } | |
1154 return z.revert(r); | |
1155 } | |
1156 | |
1157 // (public) gcd(this,a) (HAC 14.54) | |
1158 function bnGCD(a) { | |
1159 var x = (this.s<0)?this.negate():this.clone(); | |
1160 var y = (a.s<0)?a.negate():a.clone(); | |
1161 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } | |
1162 var i = x.getLowestSetBit(), g = y.getLowestSetBit(); | |
1163 if(g < 0) return x; | |
1164 if(i < g) g = i; | |
1165 if(g > 0) { | |
1166 x.rShiftTo(g,x); | |
1167 y.rShiftTo(g,y); | |
1168 } | |
1169 while(x.signum() > 0) { | |
1170 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); | |
1171 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); | |
1172 if(x.compareTo(y) >= 0) { | |
1173 x.subTo(y,x); | |
1174 x.rShiftTo(1,x); | |
1175 } | |
1176 else { | |
1177 y.subTo(x,y); | |
1178 y.rShiftTo(1,y); | |
1179 } | |
1180 } | |
1181 if(g > 0) y.lShiftTo(g,y); | |
1182 return y; | |
1183 } | |
1184 | |
1185 // (protected) this % n, n < 2^26 | |
1186 function bnpModInt(n) { | |
1187 var this_array = this.array; | |
1188 if(n <= 0) return 0; | |
1189 var d = BI_DV%n, r = (this.s<0)?n-1:0; | |
1190 if(this.t > 0) | |
1191 if(d == 0) r = this_array[0]%n; | |
1192 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; | |
1193 return r; | |
1194 } | |
1195 | |
1196 // (public) 1/this % m (HAC 14.61) | |
1197 function bnModInverse(m) { | |
1198 var ac = m.isEven(); | |
1199 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; | |
1200 var u = m.clone(), v = this.clone(); | |
1201 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); | |
1202 while(u.signum() != 0) { | |
1203 while(u.isEven()) { | |
1204 u.rShiftTo(1,u); | |
1205 if(ac) { | |
1206 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } | |
1207 a.rShiftTo(1,a); | |
1208 } | |
1209 else if(!b.isEven()) b.subTo(m,b); | |
1210 b.rShiftTo(1,b); | |
1211 } | |
1212 while(v.isEven()) { | |
1213 v.rShiftTo(1,v); | |
1214 if(ac) { | |
1215 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } | |
1216 c.rShiftTo(1,c); | |
1217 } | |
1218 else if(!d.isEven()) d.subTo(m,d); | |
1219 d.rShiftTo(1,d); | |
1220 } | |
1221 if(u.compareTo(v) >= 0) { | |
1222 u.subTo(v,u); | |
1223 if(ac) a.subTo(c,a); | |
1224 b.subTo(d,b); | |
1225 } | |
1226 else { | |
1227 v.subTo(u,v); | |
1228 if(ac) c.subTo(a,c); | |
1229 d.subTo(b,d); | |
1230 } | |
1231 } | |
1232 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; | |
1233 if(d.compareTo(m) >= 0) return d.subtract(m); | |
1234 if(d.signum() < 0) d.addTo(m,d); else return d; | |
1235 if(d.signum() < 0) return d.add(m); else return d; | |
1236 } | |
1237 | |
1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,8
3,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,
193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,
311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,
433,439,443,449,457,461,463,467,479,487,491,499,503,509]; | |
1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1]; | |
1240 | |
1241 // (public) test primality with certainty >= 1-.5^t | |
1242 function bnIsProbablePrime(t) { | |
1243 var i, x = this.abs(); | |
1244 var x_array = x.array; | |
1245 if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { | |
1246 for(i = 0; i < lowprimes.length; ++i) | |
1247 if(x_array[0] == lowprimes[i]) return true; | |
1248 return false; | |
1249 } | |
1250 if(x.isEven()) return false; | |
1251 i = 1; | |
1252 while(i < lowprimes.length) { | |
1253 var m = lowprimes[i], j = i+1; | |
1254 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; | |
1255 m = x.modInt(m); | |
1256 while(i < j) if(m%lowprimes[i++] == 0) return false; | |
1257 } | |
1258 return x.millerRabin(t); | |
1259 } | |
1260 | |
1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin) | |
1262 function bnpMillerRabin(t) { | |
1263 var n1 = this.subtract(BigInteger.ONE); | |
1264 var k = n1.getLowestSetBit(); | |
1265 if(k <= 0) return false; | |
1266 var r = n1.shiftRight(k); | |
1267 t = (t+1)>>1; | |
1268 if(t > lowprimes.length) t = lowprimes.length; | |
1269 var a = nbi(); | |
1270 for(var i = 0; i < t; ++i) { | |
1271 a.fromInt(lowprimes[i]); | |
1272 var y = a.modPow(r,this); | |
1273 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { | |
1274 var j = 1; | |
1275 while(j++ < k && y.compareTo(n1) != 0) { | |
1276 y = y.modPowInt(2,this); | |
1277 if(y.compareTo(BigInteger.ONE) == 0) return false; | |
1278 } | |
1279 if(y.compareTo(n1) != 0) return false; | |
1280 } | |
1281 } | |
1282 return true; | |
1283 } | |
1284 | |
1285 // protected | |
1286 BigInteger.prototype.chunkSize = bnpChunkSize; | |
1287 BigInteger.prototype.toRadix = bnpToRadix; | |
1288 BigInteger.prototype.fromRadix = bnpFromRadix; | |
1289 BigInteger.prototype.fromNumber = bnpFromNumber; | |
1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo; | |
1291 BigInteger.prototype.changeBit = bnpChangeBit; | |
1292 BigInteger.prototype.addTo = bnpAddTo; | |
1293 BigInteger.prototype.dMultiply = bnpDMultiply; | |
1294 BigInteger.prototype.dAddOffset = bnpDAddOffset; | |
1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; | |
1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; | |
1297 BigInteger.prototype.modInt = bnpModInt; | |
1298 BigInteger.prototype.millerRabin = bnpMillerRabin; | |
1299 | |
1300 // public | |
1301 BigInteger.prototype.clone = bnClone; | |
1302 BigInteger.prototype.intValue = bnIntValue; | |
1303 BigInteger.prototype.byteValue = bnByteValue; | |
1304 BigInteger.prototype.shortValue = bnShortValue; | |
1305 BigInteger.prototype.signum = bnSigNum; | |
1306 BigInteger.prototype.toByteArray = bnToByteArray; | |
1307 BigInteger.prototype.equals = bnEquals; | |
1308 BigInteger.prototype.min = bnMin; | |
1309 BigInteger.prototype.max = bnMax; | |
1310 BigInteger.prototype.and = bnAnd; | |
1311 BigInteger.prototype.or = bnOr; | |
1312 BigInteger.prototype.xor = bnXor; | |
1313 BigInteger.prototype.andNot = bnAndNot; | |
1314 BigInteger.prototype.not = bnNot; | |
1315 BigInteger.prototype.shiftLeft = bnShiftLeft; | |
1316 BigInteger.prototype.shiftRight = bnShiftRight; | |
1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; | |
1318 BigInteger.prototype.bitCount = bnBitCount; | |
1319 BigInteger.prototype.testBit = bnTestBit; | |
1320 BigInteger.prototype.setBit = bnSetBit; | |
1321 BigInteger.prototype.clearBit = bnClearBit; | |
1322 BigInteger.prototype.flipBit = bnFlipBit; | |
1323 BigInteger.prototype.add = bnAdd; | |
1324 BigInteger.prototype.subtract = bnSubtract; | |
1325 BigInteger.prototype.multiply = bnMultiply; | |
1326 BigInteger.prototype.divide = bnDivide; | |
1327 BigInteger.prototype.remainder = bnRemainder; | |
1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; | |
1329 BigInteger.prototype.modPow = bnModPow; | |
1330 BigInteger.prototype.modInverse = bnModInverse; | |
1331 BigInteger.prototype.pow = bnPow; | |
1332 BigInteger.prototype.gcd = bnGCD; | |
1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime; | |
1334 | |
1335 // BigInteger interfaces not implemented in jsbn: | |
1336 | |
1337 // BigInteger(int signum, byte[] magnitude) | |
1338 // double doubleValue() | |
1339 // float floatValue() | |
1340 // int hashCode() | |
1341 // long longValue() | |
1342 // static BigInteger valueOf(long val) | |
1343 // prng4.js - uses Arcfour as a PRNG | |
1344 | |
1345 function Arcfour() { | |
1346 this.i = 0; | |
1347 this.j = 0; | |
1348 this.S = new Array(); | |
1349 } | |
1350 | |
1351 // Initialize arcfour context from key, an array of ints, each from [0..255] | |
1352 function ARC4init(key) { | |
1353 var i, j, t; | |
1354 for(i = 0; i < 256; ++i) | |
1355 this.S[i] = i; | |
1356 j = 0; | |
1357 for(i = 0; i < 256; ++i) { | |
1358 j = (j + this.S[i] + key[i % key.length]) & 255; | |
1359 t = this.S[i]; | |
1360 this.S[i] = this.S[j]; | |
1361 this.S[j] = t; | |
1362 } | |
1363 this.i = 0; | |
1364 this.j = 0; | |
1365 } | |
1366 | |
1367 function ARC4next() { | |
1368 var t; | |
1369 this.i = (this.i + 1) & 255; | |
1370 this.j = (this.j + this.S[this.i]) & 255; | |
1371 t = this.S[this.i]; | |
1372 this.S[this.i] = this.S[this.j]; | |
1373 this.S[this.j] = t; | |
1374 return this.S[(t + this.S[this.i]) & 255]; | |
1375 } | |
1376 | |
1377 Arcfour.prototype.init = ARC4init; | |
1378 Arcfour.prototype.next = ARC4next; | |
1379 | |
1380 // Plug in your RNG constructor here | |
1381 function prng_newstate() { | |
1382 return new Arcfour(); | |
1383 } | |
1384 | |
1385 // Pool size must be a multiple of 4 and greater than 32. | |
1386 // An array of bytes the size of the pool will be passed to init() | |
1387 var rng_psize = 256; | |
1388 // Random number generator - requires a PRNG backend, e.g. prng4.js | |
1389 | |
1390 // For best results, put code like | |
1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> | |
1392 // in your main HTML document. | |
1393 | |
1394 var rng_state; | |
1395 var rng_pool; | |
1396 var rng_pptr; | |
1397 | |
1398 // Mix in a 32-bit integer into the pool | |
1399 function rng_seed_int(x) { | |
1400 rng_pool[rng_pptr++] ^= x & 255; | |
1401 rng_pool[rng_pptr++] ^= (x >> 8) & 255; | |
1402 rng_pool[rng_pptr++] ^= (x >> 16) & 255; | |
1403 rng_pool[rng_pptr++] ^= (x >> 24) & 255; | |
1404 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; | |
1405 } | |
1406 | |
1407 // Mix in the current time (w/milliseconds) into the pool | |
1408 function rng_seed_time() { | |
1409 // Use pre-computed date to avoid making the benchmark | |
1410 // results dependent on the current date. | |
1411 rng_seed_int(1122926989487); | |
1412 } | |
1413 | |
1414 // Initialize the pool with junk if needed. | |
1415 if(rng_pool == null) { | |
1416 rng_pool = new Array(); | |
1417 rng_pptr = 0; | |
1418 var t; | |
1419 while(rng_pptr < rng_psize) { // extract some randomness from Math.random() | |
1420 t = Math.floor(65536 * Math.random()); | |
1421 rng_pool[rng_pptr++] = t >>> 8; | |
1422 rng_pool[rng_pptr++] = t & 255; | |
1423 } | |
1424 rng_pptr = 0; | |
1425 rng_seed_time(); | |
1426 //rng_seed_int(window.screenX); | |
1427 //rng_seed_int(window.screenY); | |
1428 } | |
1429 | |
1430 function rng_get_byte() { | |
1431 if(rng_state == null) { | |
1432 rng_seed_time(); | |
1433 rng_state = prng_newstate(); | |
1434 rng_state.init(rng_pool); | |
1435 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) | |
1436 rng_pool[rng_pptr] = 0; | |
1437 rng_pptr = 0; | |
1438 //rng_pool = null; | |
1439 } | |
1440 // TODO: allow reseeding after first request | |
1441 return rng_state.next(); | |
1442 } | |
1443 | |
1444 function rng_get_bytes(ba) { | |
1445 var i; | |
1446 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); | |
1447 } | |
1448 | |
1449 function SecureRandom() {} | |
1450 | |
1451 SecureRandom.prototype.nextBytes = rng_get_bytes; | |
1452 // Depends on jsbn.js and rng.js | |
1453 | |
1454 // convert a (hex) string to a bignum object | |
1455 function parseBigInt(str,r) { | |
1456 return new BigInteger(str,r); | |
1457 } | |
1458 | |
1459 function linebrk(s,n) { | |
1460 var ret = ""; | |
1461 var i = 0; | |
1462 while(i + n < s.length) { | |
1463 ret += s.substring(i,i+n) + "\n"; | |
1464 i += n; | |
1465 } | |
1466 return ret + s.substring(i,s.length); | |
1467 } | |
1468 | |
1469 function byte2Hex(b) { | |
1470 if(b < 0x10) | |
1471 return "0" + b.toString(16); | |
1472 else | |
1473 return b.toString(16); | |
1474 } | |
1475 | |
1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint | |
1477 function pkcs1pad2(s,n) { | |
1478 if(n < s.length + 11) { | |
1479 alert("Message too long for RSA"); | |
1480 return null; | |
1481 } | |
1482 var ba = new Array(); | |
1483 var i = s.length - 1; | |
1484 while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); | |
1485 ba[--n] = 0; | |
1486 var rng = new SecureRandom(); | |
1487 var x = new Array(); | |
1488 while(n > 2) { // random non-zero pad | |
1489 x[0] = 0; | |
1490 while(x[0] == 0) rng.nextBytes(x); | |
1491 ba[--n] = x[0]; | |
1492 } | |
1493 ba[--n] = 2; | |
1494 ba[--n] = 0; | |
1495 return new BigInteger(ba); | |
1496 } | |
1497 | |
1498 // "empty" RSA key constructor | |
1499 function RSAKey() { | |
1500 this.n = null; | |
1501 this.e = 0; | |
1502 this.d = null; | |
1503 this.p = null; | |
1504 this.q = null; | |
1505 this.dmp1 = null; | |
1506 this.dmq1 = null; | |
1507 this.coeff = null; | |
1508 } | |
1509 | |
1510 // Set the public key fields N and e from hex strings | |
1511 function RSASetPublic(N,E) { | |
1512 if(N != null && E != null && N.length > 0 && E.length > 0) { | |
1513 this.n = parseBigInt(N,16); | |
1514 this.e = parseInt(E,16); | |
1515 } | |
1516 else | |
1517 alert("Invalid RSA public key"); | |
1518 } | |
1519 | |
1520 // Perform raw public operation on "x": return x^e (mod n) | |
1521 function RSADoPublic(x) { | |
1522 return x.modPowInt(this.e, this.n); | |
1523 } | |
1524 | |
1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string | |
1526 function RSAEncrypt(text) { | |
1527 var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); | |
1528 if(m == null) return null; | |
1529 var c = this.doPublic(m); | |
1530 if(c == null) return null; | |
1531 var h = c.toString(16); | |
1532 if((h.length & 1) == 0) return h; else return "0" + h; | |
1533 } | |
1534 | |
1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string | |
1536 //function RSAEncryptB64(text) { | |
1537 // var h = this.encrypt(text); | |
1538 // if(h) return hex2b64(h); else return null; | |
1539 //} | |
1540 | |
1541 // protected | |
1542 RSAKey.prototype.doPublic = RSADoPublic; | |
1543 | |
1544 // public | |
1545 RSAKey.prototype.setPublic = RSASetPublic; | |
1546 RSAKey.prototype.encrypt = RSAEncrypt; | |
1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; | |
1548 // Depends on rsa.js and jsbn2.js | |
1549 | |
1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext | |
1551 function pkcs1unpad2(d,n) { | |
1552 var b = d.toByteArray(); | |
1553 var i = 0; | |
1554 while(i < b.length && b[i] == 0) ++i; | |
1555 if(b.length-i != n-1 || b[i] != 2) | |
1556 return null; | |
1557 ++i; | |
1558 while(b[i] != 0) | |
1559 if(++i >= b.length) return null; | |
1560 var ret = ""; | |
1561 while(++i < b.length) | |
1562 ret += String.fromCharCode(b[i]); | |
1563 return ret; | |
1564 } | |
1565 | |
1566 // Set the private key fields N, e, and d from hex strings | |
1567 function RSASetPrivate(N,E,D) { | |
1568 if(N != null && E != null && N.length > 0 && E.length > 0) { | |
1569 this.n = parseBigInt(N,16); | |
1570 this.e = parseInt(E,16); | |
1571 this.d = parseBigInt(D,16); | |
1572 } | |
1573 else | |
1574 alert("Invalid RSA private key"); | |
1575 } | |
1576 | |
1577 // Set the private key fields N, e, d and CRT params from hex strings | |
1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { | |
1579 if(N != null && E != null && N.length > 0 && E.length > 0) { | |
1580 this.n = parseBigInt(N,16); | |
1581 this.e = parseInt(E,16); | |
1582 this.d = parseBigInt(D,16); | |
1583 this.p = parseBigInt(P,16); | |
1584 this.q = parseBigInt(Q,16); | |
1585 this.dmp1 = parseBigInt(DP,16); | |
1586 this.dmq1 = parseBigInt(DQ,16); | |
1587 this.coeff = parseBigInt(C,16); | |
1588 } | |
1589 else | |
1590 alert("Invalid RSA private key"); | |
1591 } | |
1592 | |
1593 // Generate a new random private key B bits long, using public expt E | |
1594 function RSAGenerate(B,E) { | |
1595 var rng = new SecureRandom(); | |
1596 var qs = B>>1; | |
1597 this.e = parseInt(E,16); | |
1598 var ee = new BigInteger(E,16); | |
1599 for(;;) { | |
1600 for(;;) { | |
1601 this.p = new BigInteger(B-qs,1,rng); | |
1602 if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0
&& this.p.isProbablePrime(10)) break; | |
1603 } | |
1604 for(;;) { | |
1605 this.q = new BigInteger(qs,1,rng); | |
1606 if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0
&& this.q.isProbablePrime(10)) break; | |
1607 } | |
1608 if(this.p.compareTo(this.q) <= 0) { | |
1609 var t = this.p; | |
1610 this.p = this.q; | |
1611 this.q = t; | |
1612 } | |
1613 var p1 = this.p.subtract(BigInteger.ONE); | |
1614 var q1 = this.q.subtract(BigInteger.ONE); | |
1615 var phi = p1.multiply(q1); | |
1616 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { | |
1617 this.n = this.p.multiply(this.q); | |
1618 this.d = ee.modInverse(phi); | |
1619 this.dmp1 = this.d.mod(p1); | |
1620 this.dmq1 = this.d.mod(q1); | |
1621 this.coeff = this.q.modInverse(this.p); | |
1622 break; | |
1623 } | |
1624 } | |
1625 } | |
1626 | |
1627 // Perform raw private operation on "x": return x^d (mod n) | |
1628 function RSADoPrivate(x) { | |
1629 if(this.p == null || this.q == null) | |
1630 return x.modPow(this.d, this.n); | |
1631 | |
1632 // TODO: re-calculate any missing CRT params | |
1633 var xp = x.mod(this.p).modPow(this.dmp1, this.p); | |
1634 var xq = x.mod(this.q).modPow(this.dmq1, this.q); | |
1635 | |
1636 while(xp.compareTo(xq) < 0) | |
1637 xp = xp.add(this.p); | |
1638 return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(x
q); | |
1639 } | |
1640 | |
1641 // Return the PKCS#1 RSA decryption of "ctext". | |
1642 // "ctext" is an even-length hex string and the output is a plain string. | |
1643 function RSADecrypt(ctext) { | |
1644 var c = parseBigInt(ctext, 16); | |
1645 var m = this.doPrivate(c); | |
1646 if(m == null) return null; | |
1647 return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); | |
1648 } | |
1649 | |
1650 // Return the PKCS#1 RSA decryption of "ctext". | |
1651 // "ctext" is a Base64-encoded string and the output is a plain string. | |
1652 //function RSAB64Decrypt(ctext) { | |
1653 // var h = b64tohex(ctext); | |
1654 // if(h) return this.decrypt(h); else return null; | |
1655 //} | |
1656 | |
1657 // protected | |
1658 RSAKey.prototype.doPrivate = RSADoPrivate; | |
1659 | |
1660 // public | |
1661 RSAKey.prototype.setPrivate = RSASetPrivate; | |
1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx; | |
1663 RSAKey.prototype.generate = RSAGenerate; | |
1664 RSAKey.prototype.decrypt = RSADecrypt; | |
1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; | |
1666 | |
1667 | |
1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd9
4057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49
175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074
eafd036a5eb83359d2a698d3"; | |
1669 eValue="10001"; | |
1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293f
c97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d
31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891
464fba23d0d965086277a161"; | |
1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bd
e14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; | |
1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d
54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; | |
1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500
038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; | |
1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d91433
7eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; | |
1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db17
34c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; | |
1676 | |
1677 setupEngine(am3, 28); | |
1678 | |
1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + | |
1680 "Now is the time for all good men to come to the party."; | |
1681 var encrypted; | |
1682 | |
1683 function encrypt() { | |
1684 var RSA = new RSAKey(); | |
1685 RSA.setPublic(nValue, eValue); | |
1686 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value,
coeffValue); | |
1687 encrypted = RSA.encrypt(TEXT); | |
1688 } | |
1689 | |
1690 function decrypt() { | |
1691 var RSA = new RSAKey(); | |
1692 RSA.setPublic(nValue, eValue); | |
1693 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value,
coeffValue); | |
1694 var decrypted = RSA.decrypt(encrypted); | |
1695 if (decrypted != TEXT) { | |
1696 throw new Error("Crypto operation failed"); | |
1697 } | |
1698 } | |
OLD | NEW |