Chromium Code Reviews| Index: sandbox/linux/seccomp-bpf/sandbox_bpf.cc |
| diff --git a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc |
| index ff855b8a9cb131119963fd0829544b5f00e41b2b..74e308f14547bb0d4c0ca5aebd31dca8e1710125 100644 |
| --- a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc |
| +++ b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc |
| @@ -72,7 +72,7 @@ const int kExpectedExitCode = 100; |
| // We define a really simple sandbox policy. It is just good enough for us |
| // to tell that the sandbox has actually been activated. |
| -ErrorCode Sandbox::probeEvaluator(int sysnum, void *) { |
| +ErrorCode Sandbox::ProbeEvaluator(int sysnum, void *) { |
| switch (sysnum) { |
| case __NR_getpid: |
| // Return EPERM so that we can check that the filter actually ran. |
| @@ -86,24 +86,24 @@ ErrorCode Sandbox::probeEvaluator(int sysnum, void *) { |
| } |
| } |
| -void Sandbox::probeProcess(void) { |
| +void Sandbox::ProbeProcess(void) { |
| if (syscall(__NR_getpid) < 0 && errno == EPERM) { |
| syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); |
| } |
| } |
| -bool Sandbox::isValidSyscallNumber(int sysnum) { |
| +bool Sandbox::IsValidSyscallNumber(int sysnum) { |
| return SyscallIterator::IsValid(sysnum); |
| } |
| -ErrorCode Sandbox::allowAllEvaluator(int sysnum, void *) { |
| - if (!isValidSyscallNumber(sysnum)) { |
| +ErrorCode Sandbox::AllowAllEvaluator(int sysnum, void *) { |
| + if (!IsValidSyscallNumber(sysnum)) { |
| return ErrorCode(ENOSYS); |
| } |
| return ErrorCode(ErrorCode::ERR_ALLOWED); |
| } |
| -void Sandbox::tryVsyscallProcess(void) { |
| +void Sandbox::TryVsyscallProcess(void) { |
| time_t current_time; |
| // time() is implemented as a vsyscall. With an older glibc, with |
| // vsyscall=emulate and some versions of the seccomp BPF patch |
| @@ -113,15 +113,15 @@ void Sandbox::tryVsyscallProcess(void) { |
| } |
| } |
| -bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(), |
| - EvaluateSyscall syscallEvaluator, |
| +bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(), |
| + EvaluateSyscall syscall_evaluator, |
| void *aux, |
| int proc_fd) { |
| // Block all signals before forking a child process. This prevents an |
| // attacker from manipulating our test by sending us an unexpected signal. |
| - sigset_t oldMask, newMask; |
| - if (sigfillset(&newMask) || |
| - sigprocmask(SIG_BLOCK, &newMask, &oldMask)) { |
| + sigset_t old_mask, new_mask; |
| + if (sigfillset(&new_mask) || |
| + sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) { |
| SANDBOX_DIE("sigprocmask() failed"); |
| } |
| int fds[2]; |
| @@ -141,7 +141,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(), |
| // But what we don't want to do is return "false", as a crafty |
| // attacker might cause fork() to fail at will and could trick us |
| // into running without a sandbox. |
| - sigprocmask(SIG_SETMASK, &oldMask, NULL); // OK, if it fails |
| + sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails |
| SANDBOX_DIE("fork() failed unexpectedly"); |
| } |
| @@ -170,18 +170,18 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(), |
| } |
| evaluators_.clear(); |
| - setSandboxPolicy(syscallEvaluator, aux); |
| - setProcFd(proc_fd); |
| + SetSandboxPolicy(syscall_evaluator, aux); |
| + SetProcFd(proc_fd); |
| // By passing "quiet=true" to "startSandboxInternal()" we suppress |
| // messages for expected and benign failures (e.g. if the current |
| // kernel lacks support for BPF filters). |
| - startSandboxInternal(true); |
| + StartSandboxInternal(true); |
| // Run our code in the sandbox. |
| - CodeInSandbox(); |
| + code_in_sandbox(); |
| - // CodeInSandbox() is not supposed to return here. |
| + // code_in_sandbox() is not supposed to return here. |
| SANDBOX_DIE(NULL); |
| } |
| @@ -189,7 +189,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(), |
| if (HANDLE_EINTR(close(fds[1]))) { |
| SANDBOX_DIE("close() failed"); |
| } |
| - if (sigprocmask(SIG_SETMASK, &oldMask, NULL)) { |
| + if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) { |
| SANDBOX_DIE("sigprocmask() failed"); |
| } |
| int status; |
| @@ -221,7 +221,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(), |
| return rc; |
| } |
| -bool Sandbox::kernelSupportSeccompBPF(int proc_fd) { |
| +bool Sandbox::KernelSupportSeccompBPF(int proc_fd) { |
| #if defined(SECCOMP_BPF_VALGRIND_HACKS) |
| if (RUNNING_ON_VALGRIND) { |
| // Valgrind doesn't like our run-time test. Disable testing and assume we |
| @@ -232,12 +232,12 @@ bool Sandbox::kernelSupportSeccompBPF(int proc_fd) { |
| #endif |
| return |
| - RunFunctionInPolicy(probeProcess, Sandbox::probeEvaluator, 0, proc_fd) && |
| - RunFunctionInPolicy(tryVsyscallProcess, Sandbox::allowAllEvaluator, 0, |
| + RunFunctionInPolicy(ProbeProcess, Sandbox::ProbeEvaluator, 0, proc_fd) && |
| + RunFunctionInPolicy(TryVsyscallProcess, Sandbox::AllowAllEvaluator, 0, |
| proc_fd); |
| } |
| -Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) { |
| +Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) { |
| // It the sandbox is currently active, we clearly must have support for |
| // sandboxing. |
| if (status_ == STATUS_ENABLED) { |
| @@ -247,13 +247,13 @@ Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) { |
| // Even if the sandbox was previously available, something might have |
| // changed in our run-time environment. Check one more time. |
| if (status_ == STATUS_AVAILABLE) { |
| - if (!isSingleThreaded(proc_fd)) { |
| + if (!IsSingleThreaded(proc_fd)) { |
| status_ = STATUS_UNAVAILABLE; |
| } |
| return status_; |
| } |
| - if (status_ == STATUS_UNAVAILABLE && isSingleThreaded(proc_fd)) { |
| + if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) { |
| // All state transitions resulting in STATUS_UNAVAILABLE are immediately |
| // preceded by STATUS_AVAILABLE. Furthermore, these transitions all |
| // happen, if and only if they are triggered by the process being multi- |
| @@ -269,25 +269,25 @@ Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) { |
| // we otherwise don't believe to have a good cached value, we have to |
| // perform a thorough check now. |
| if (status_ == STATUS_UNKNOWN) { |
| - status_ = kernelSupportSeccompBPF(proc_fd) |
| + status_ = KernelSupportSeccompBPF(proc_fd) |
| ? STATUS_AVAILABLE : STATUS_UNSUPPORTED; |
| // As we are performing our tests from a child process, the run-time |
| // environment that is visible to the sandbox is always guaranteed to be |
| // single-threaded. Let's check here whether the caller is single- |
| // threaded. Otherwise, we mark the sandbox as temporarily unavailable. |
| - if (status_ == STATUS_AVAILABLE && !isSingleThreaded(proc_fd)) { |
| + if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) { |
| status_ = STATUS_UNAVAILABLE; |
| } |
| } |
| return status_; |
| } |
| -void Sandbox::setProcFd(int proc_fd) { |
| +void Sandbox::SetProcFd(int proc_fd) { |
| proc_fd_ = proc_fd; |
| } |
| -void Sandbox::startSandboxInternal(bool quiet) { |
| +void Sandbox::StartSandboxInternal(bool quiet) { |
| if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) { |
| SANDBOX_DIE("Trying to start sandbox, even though it is known to be " |
| "unavailable"); |
| @@ -302,7 +302,7 @@ void Sandbox::startSandboxInternal(bool quiet) { |
| // For now, continue in degraded mode, if we can't access /proc. |
| // In the future, we might want to tighten this requirement. |
| } |
| - if (!isSingleThreaded(proc_fd_)) { |
| + if (!IsSingleThreaded(proc_fd_)) { |
| SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded"); |
| } |
| @@ -317,13 +317,13 @@ void Sandbox::startSandboxInternal(bool quiet) { |
| } |
| // Install the filters. |
| - installFilter(quiet); |
| + InstallFilter(quiet); |
| // We are now inside the sandbox. |
| status_ = STATUS_ENABLED; |
| } |
| -bool Sandbox::isSingleThreaded(int proc_fd) { |
| +bool Sandbox::IsSingleThreaded(int proc_fd) { |
| if (proc_fd < 0) { |
| // Cannot determine whether program is single-threaded. Hope for |
| // the best... |
| @@ -344,17 +344,17 @@ bool Sandbox::isSingleThreaded(int proc_fd) { |
| return true; |
| } |
| -bool Sandbox::isDenied(const ErrorCode& code) { |
| +bool Sandbox::IsDenied(const ErrorCode& code) { |
| return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP || |
| (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) && |
| code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO)); |
| } |
| -void Sandbox::policySanityChecks(EvaluateSyscall syscallEvaluator, |
| +void Sandbox::PolicySanityChecks(EvaluateSyscall syscall_evaluator, |
| void *aux) { |
| for (SyscallIterator iter(true); !iter.Done(); ) { |
| uint32_t sysnum = iter.Next(); |
| - if (!isDenied(syscallEvaluator(sysnum, aux))) { |
| + if (!IsDenied(syscall_evaluator(sysnum, aux))) { |
| SANDBOX_DIE("Policies should deny system calls that are outside the " |
| "expected range (typically MIN_SYSCALL..MAX_SYSCALL)"); |
| } |
| @@ -365,8 +365,8 @@ void Sandbox::policySanityChecks(EvaluateSyscall syscallEvaluator, |
| void Sandbox::CheckForUnsafeErrorCodes(Instruction *insn, void *aux) { |
| if (BPF_CLASS(insn->code) == BPF_RET && |
| insn->k > SECCOMP_RET_TRAP && |
| - insn->k - SECCOMP_RET_TRAP <= trapArraySize_) { |
| - const ErrorCode& err = trapArray_[insn->k - SECCOMP_RET_TRAP - 1]; |
| + insn->k - SECCOMP_RET_TRAP <= trap_array_size_) { |
| + const ErrorCode& err = trap_array_[insn->k - SECCOMP_RET_TRAP - 1]; |
| if (!err.safe_) { |
| bool *is_unsafe = static_cast<bool *>(aux); |
| *is_unsafe = true; |
| @@ -374,7 +374,7 @@ void Sandbox::CheckForUnsafeErrorCodes(Instruction *insn, void *aux) { |
| } |
| } |
| -void Sandbox::RedirectToUserspace(Instruction *insn, void *aux) { |
| +void Sandbox::RedirectToUserspace(Instruction *insn, void *) { |
| // When inside an UnsafeTrap() callback, we want to allow all system calls. |
| // This means, we must conditionally disable the sandbox -- and that's not |
| // something that kernel-side BPF filters can do, as they cannot inspect |
| @@ -404,15 +404,15 @@ ErrorCode Sandbox::RedirectToUserspaceEvalWrapper(int sysnum, void *aux) { |
| return err; |
| } |
| -void Sandbox::setSandboxPolicy(EvaluateSyscall syscallEvaluator, void *aux) { |
| +void Sandbox::SetSandboxPolicy(EvaluateSyscall syscall_evaluator, void *aux) { |
| if (status_ == STATUS_ENABLED) { |
| SANDBOX_DIE("Cannot change policy after sandbox has started"); |
| } |
| - policySanityChecks(syscallEvaluator, aux); |
| - evaluators_.push_back(std::make_pair(syscallEvaluator, aux)); |
| + PolicySanityChecks(syscall_evaluator, aux); |
| + evaluators_.push_back(std::make_pair(syscall_evaluator, aux)); |
| } |
| -void Sandbox::installFilter(bool quiet) { |
| +void Sandbox::InstallFilter(bool quiet) { |
| // Verify that the user pushed a policy. |
| if (evaluators_.empty()) { |
| filter_failed: |
| @@ -422,7 +422,7 @@ void Sandbox::installFilter(bool quiet) { |
| // Set new SIGSYS handler |
| struct sigaction sa; |
| memset(&sa, 0, sizeof(sa)); |
| - sa.sa_sigaction = sigSys; |
| + sa.sa_sigaction = SigSys; |
| sa.sa_flags = SA_SIGINFO | SA_NODEFER; |
| if (sigaction(SIGSYS, &sa, NULL) < 0) { |
| goto filter_failed; |
| @@ -458,18 +458,17 @@ void Sandbox::installFilter(bool quiet) { |
| gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, SECCOMP_ARCH, |
| NULL, |
| gen->MakeInstruction(BPF_RET+BPF_K, |
| - Kill( |
| - "Invalid audit architecture in BPF filter").err_))); |
| + Kill("Invalid audit architecture in BPF filter")))); |
| { |
| // Evaluate all possible system calls and group their ErrorCodes into |
| // ranges of identical codes. |
| Ranges ranges; |
| - findRanges(&ranges); |
| + FindRanges(&ranges); |
| // Compile the system call ranges to an optimized BPF jumptable |
| Instruction *jumptable = |
| - assembleJumpTable(gen, ranges.begin(), ranges.end()); |
| + AssembleJumpTable(gen, ranges.begin(), ranges.end()); |
| // If there is at least one UnsafeTrap() in our program, the entire sandbox |
| // is unsafe. We need to modify the program so that all non- |
| @@ -625,6 +624,7 @@ void Sandbox::installFilter(bool quiet) { |
| // Release memory that is no longer needed |
| evaluators_.clear(); |
| + conds_.clear(); |
| #if defined(SECCOMP_BPF_VALGRIND_HACKS) |
| // Valgrind is really not happy about our sandbox. Disable it when running |
| @@ -646,36 +646,36 @@ void Sandbox::installFilter(bool quiet) { |
| return; |
| } |
| -void Sandbox::findRanges(Ranges *ranges) { |
| +void Sandbox::FindRanges(Ranges *ranges) { |
| // Please note that "struct seccomp_data" defines system calls as a signed |
| // int32_t, but BPF instructions always operate on unsigned quantities. We |
| // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, |
| // and then verifying that the rest of the number range (both positive and |
| // negative) all return the same ErrorCode. |
| - EvaluateSyscall evaluateSyscall = evaluators_.begin()->first; |
| - void *aux = evaluators_.begin()->second; |
| - uint32_t oldSysnum = 0; |
| - ErrorCode oldErr = evaluateSyscall(oldSysnum, aux); |
| - ErrorCode invalidErr = evaluateSyscall(MIN_SYSCALL - 1, aux); |
| + EvaluateSyscall evaluate_syscall = evaluators_.begin()->first; |
| + void *aux = evaluators_.begin()->second; |
| + uint32_t old_sysnum = 0; |
| + ErrorCode old_err = evaluate_syscall(old_sysnum, aux); |
| + ErrorCode invalid_err = evaluate_syscall(MIN_SYSCALL - 1, aux); |
| for (SyscallIterator iter(false); !iter.Done(); ) { |
| uint32_t sysnum = iter.Next(); |
| - ErrorCode err = evaluateSyscall(static_cast<int>(sysnum), aux); |
| - if (!iter.IsValid(sysnum) && !invalidErr.Equals(err)) { |
| + ErrorCode err = evaluate_syscall(static_cast<int>(sysnum), aux); |
| + if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) { |
| // A proper sandbox policy should always treat system calls outside of |
| // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns |
| // "false" for SyscallIterator::IsValid()) identically. Typically, all |
| // of these system calls would be denied with the same ErrorCode. |
| SANDBOX_DIE("Invalid seccomp policy"); |
| } |
| - if (!err.Equals(oldErr) || iter.Done()) { |
| - ranges->push_back(Range(oldSysnum, sysnum - 1, oldErr)); |
| - oldSysnum = sysnum; |
| - oldErr = err; |
| + if (!err.Equals(old_err) || iter.Done()) { |
| + ranges->push_back(Range(old_sysnum, sysnum - 1, old_err)); |
| + old_sysnum = sysnum; |
| + old_err = err; |
| } |
| } |
| } |
| -Instruction *Sandbox::assembleJumpTable(CodeGen *gen, |
| +Instruction *Sandbox::AssembleJumpTable(CodeGen *gen, |
| Ranges::const_iterator start, |
| Ranges::const_iterator stop) { |
| // We convert the list of system call ranges into jump table that performs |
| @@ -687,7 +687,7 @@ Instruction *Sandbox::assembleJumpTable(CodeGen *gen, |
| } else if (stop - start == 1) { |
| // If we have narrowed things down to a single range object, we can |
| // return from the BPF filter program. |
| - return gen->MakeInstruction(BPF_RET+BPF_K, start->err); |
| + return RetExpression(gen, start->err); |
| } |
| // Pick the range object that is located at the mid point of our list. |
| @@ -697,18 +697,83 @@ Instruction *Sandbox::assembleJumpTable(CodeGen *gen, |
| Ranges::const_iterator mid = start + (stop - start)/2; |
| // Sub-divide the list of ranges and continue recursively. |
| - Instruction *jf = assembleJumpTable(gen, start, mid); |
| - Instruction *jt = assembleJumpTable(gen, mid, stop); |
| + Instruction *jf = AssembleJumpTable(gen, start, mid); |
| + Instruction *jt = AssembleJumpTable(gen, mid, stop); |
| return gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, mid->from, jt, jf); |
| } |
| -void Sandbox::sigSys(int nr, siginfo_t *info, void *void_context) { |
| +Instruction *Sandbox::RetExpression(CodeGen *gen, const ErrorCode& cond) { |
| + if (cond.error_type_ == ErrorCode::ET_COND) { |
| + return CondExpression(gen, cond); |
| + } else { |
| + return gen->MakeInstruction(BPF_RET+BPF_K, cond); |
| + } |
| +} |
| + |
| +Instruction *Sandbox::CondExpression(CodeGen *gen, const ErrorCode& cond) { |
| + // We can only inspect the six system call arguments that are passed in |
| + // CPU registers. |
|
jln (very slow on Chromium)
2012/12/06 00:35:00
It's even worse than that and is architecture depe
Markus (顧孟勤)
2012/12/12 20:54:35
I am almost certain this is a red herring. Yes, fo
|
| + if (cond.argno_ < 0 || cond.argno_ >= 6) { |
| + SANDBOX_DIE("Internal compiler error; invalid argument number " |
| + "encountered"); |
| + } |
| + |
| + // BPF programs operate on 32bit entities. Load both halfs of the 64bit |
| + // system call argument and then generate suitable conditional statements. |
| + Instruction *msb = gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, |
| + offsetof(struct arch_seccomp_data, args) + |
| + cond.argno_ * sizeof(uint64_t) + |
| + (__BYTE_ORDER == __BIG_ENDIAN ? 0 : 4)); // Most significant bits |
| + Instruction *lsb = gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, |
| + offsetof(struct arch_seccomp_data, args) + |
| + cond.argno_ * sizeof(uint64_t) + |
| + (__BYTE_ORDER == __BIG_ENDIAN ? 4 : 0)); // Least significant bits |
| + |
| + // Emit a suitable comparison statement. |
| + switch (cond.op_) { |
| + case ErrorCode::OP_EQUAL: |
| + // Compare the least significant bits for equality |
| + gen->JoinInstructions(lsb, |
| + gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, |
| + static_cast<uint32_t>(cond.value_), |
| + RetExpression(gen, *cond.passed_), |
| + RetExpression(gen, *cond.failed_))); |
| + |
| + // If we are looking at a 64bit argument, we need to also compare the |
| + // most significant bits. |
| + if (cond.width_ == ErrorCode::TP_64BIT) { |
| + lsb = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, |
| + static_cast<uint32_t>(cond.value_ >> 32), |
| + lsb, |
| + RetExpression(gen, *cond.failed_)); |
| + } |
| + break; |
| + default: |
| + // TODO(markus): We can only check for equality so far. |
| + SANDBOX_DIE("Not implemented"); |
| + break; |
| + } |
| + |
| + // Ensure that we never pass a 64bit value, when we only expect a 32bit |
| + // value. |
| + if (cond.width_ == ErrorCode::TP_32BIT) { |
| + gen->JoinInstructions(msb, |
| + gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0, lsb, |
| + RetExpression(gen, Kill("Unexpected 64bit argument detected")))); |
| + } else { |
| + gen->JoinInstructions(msb, lsb); |
| + } |
| + |
| + return msb; |
| +} |
| + |
| +void Sandbox::SigSys(int nr, siginfo_t *info, void *void_context) { |
| // Various sanity checks to make sure we actually received a signal |
| // triggered by a BPF filter. If something else triggered SIGSYS |
| // (e.g. kill()), there is really nothing we can do with this signal. |
| if (nr != SIGSYS || info->si_code != SYS_SECCOMP || !void_context || |
| info->si_errno <= 0 || |
| - static_cast<size_t>(info->si_errno) > trapArraySize_) { |
| + static_cast<size_t>(info->si_errno) > trap_array_size_) { |
| // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal |
| // safe and can lead to bugs. We should eventually implement a different |
| // logging and reporting mechanism that is safe to be called from |
| @@ -752,7 +817,7 @@ void Sandbox::sigSys(int nr, siginfo_t *info, void *void_context) { |
| SECCOMP_PARM3(ctx), SECCOMP_PARM4(ctx), |
| SECCOMP_PARM5(ctx), SECCOMP_PARM6(ctx)); |
| } else { |
| - const ErrorCode& err = trapArray_[info->si_errno - 1]; |
| + const ErrorCode& err = trap_array_[info->si_errno - 1]; |
| if (!err.safe_) { |
| SetIsInSigHandler(); |
| } |
| @@ -803,9 +868,9 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux, |
| // Each unique pair of TrapFnc and auxiliary data make up a distinct instance |
| // of a SECCOMP_RET_TRAP. |
| TrapKey key(fnc, aux, safe); |
| - TrapIds::const_iterator iter = trapIds_.find(key); |
| + TrapIds::const_iterator iter = trap_ids_.find(key); |
| uint16_t id; |
| - if (iter != trapIds_.end()) { |
| + if (iter != trap_ids_.end()) { |
| // We have seen this pair before. Return the same id that we assigned |
| // earlier. |
| id = iter->second; |
| @@ -826,7 +891,7 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux, |
| id = traps_->size() + 1; |
| traps_->push_back(ErrorCode(fnc, aux, safe, id)); |
| - trapIds_[key] = id; |
| + trap_ids_[key] = id; |
| // We want to access the traps_ vector from our signal handler. But |
| // we are not assured that doing so is async-signal safe. On the other |
| @@ -834,8 +899,8 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux, |
| // contiguous C-style array. |
| // So, we look up the address and size of this array outside of the |
| // signal handler, where we can safely do so. |
| - trapArray_ = &(*traps_)[0]; |
| - trapArraySize_ = id; |
| + trap_array_ = &(*traps_)[0]; |
| + trap_array_size_ = id; |
| return traps_->back(); |
| } |
| @@ -869,21 +934,30 @@ intptr_t Sandbox::ReturnErrno(const struct arch_seccomp_data&, void *aux) { |
| return -err; |
| } |
| -intptr_t Sandbox::bpfFailure(const struct arch_seccomp_data&, void *aux) { |
| +ErrorCode Sandbox::Cond(int argno, ErrorCode::ArgType width, |
| + ErrorCode::Operation op, uint64_t value, |
| + const ErrorCode& passed, const ErrorCode& failed) { |
| + return ErrorCode(argno, width, op, value, |
| + &*conds_.insert(passed).first, |
| + &*conds_.insert(failed).first); |
| +} |
| + |
| +intptr_t Sandbox::BpfFailure(const struct arch_seccomp_data&, void *aux) { |
| SANDBOX_DIE(static_cast<char *>(aux)); |
| } |
| ErrorCode Sandbox::Kill(const char *msg) { |
| - return Trap(bpfFailure, const_cast<char *>(msg)); |
| + return Trap(BpfFailure, const_cast<char *>(msg)); |
| } |
| Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN; |
| -int Sandbox::proc_fd_ = -1; |
| +int Sandbox::proc_fd_ = -1; |
| Sandbox::Evaluators Sandbox::evaluators_; |
| Sandbox::Traps *Sandbox::traps_ = NULL; |
| -Sandbox::TrapIds Sandbox::trapIds_; |
| -ErrorCode *Sandbox::trapArray_ = NULL; |
| -size_t Sandbox::trapArraySize_ = 0; |
| +Sandbox::TrapIds Sandbox::trap_ids_; |
| +ErrorCode *Sandbox::trap_array_ = NULL; |
| +size_t Sandbox::trap_array_size_ = 0; |
| bool Sandbox::has_unsafe_traps_ = false; |
| +Sandbox::Conds Sandbox::conds_; |
| } // namespace |