| Index: sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| diff --git a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| index 0f144ce89c1b24d43b26ecb78a041dd7459686fc..740320fa326045c29e847a79a9c537970fd2fa8b 100644
|
| --- a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| +++ b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| @@ -2,24 +2,6 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| -#include <endian.h>
|
| -#if __BYTE_ORDER == __BIG_ENDIAN
|
| -// The BPF "struct seccomp_data" layout has to deal with storing 64bit
|
| -// values that need to be inspected by a virtual machine that only ever
|
| -// operates on 32bit values. The kernel developers decided how values
|
| -// should be split into two 32bit words to achieve this goal. But at this
|
| -// time, there is no existing BPF implementation in the kernel that uses
|
| -// 64bit big endian values. So, all we have to go by is the consensus
|
| -// from a discussion on LKLM. Actual implementations, if and when they
|
| -// happen, might very well differ.
|
| -// If this code is ever going to be used with such a kernel, you should
|
| -// disable the "#error" and carefully test the code (e.g. run the unit
|
| -// tests). If things don't work, search for all occurrences of __BYTE_ORDER
|
| -// and verify that the proposed implementation agrees with what the kernel
|
| -// actually does.
|
| -#error Big endian operation is untested and expected to be broken
|
| -#endif
|
| -
|
| #ifndef SECCOMP_BPF_STANDALONE
|
| #include "base/logging.h"
|
| #include "base/posix/eintr_wrapper.h"
|
| @@ -79,7 +61,7 @@ const int kExpectedExitCode = 100;
|
|
|
| // We define a really simple sandbox policy. It is just good enough for us
|
| // to tell that the sandbox has actually been activated.
|
| -ErrorCode Sandbox::probeEvaluator(int sysnum, void *) {
|
| +ErrorCode Sandbox::ProbeEvaluator(int sysnum, void *) {
|
| switch (sysnum) {
|
| case __NR_getpid:
|
| // Return EPERM so that we can check that the filter actually ran.
|
| @@ -93,24 +75,24 @@ ErrorCode Sandbox::probeEvaluator(int sysnum, void *) {
|
| }
|
| }
|
|
|
| -void Sandbox::probeProcess(void) {
|
| +void Sandbox::ProbeProcess(void) {
|
| if (syscall(__NR_getpid) < 0 && errno == EPERM) {
|
| syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
|
| }
|
| }
|
|
|
| -bool Sandbox::isValidSyscallNumber(int sysnum) {
|
| +bool Sandbox::IsValidSyscallNumber(int sysnum) {
|
| return SyscallIterator::IsValid(sysnum);
|
| }
|
|
|
| -ErrorCode Sandbox::allowAllEvaluator(int sysnum, void *) {
|
| - if (!isValidSyscallNumber(sysnum)) {
|
| +ErrorCode Sandbox::AllowAllEvaluator(int sysnum, void *) {
|
| + if (!IsValidSyscallNumber(sysnum)) {
|
| return ErrorCode(ENOSYS);
|
| }
|
| return ErrorCode(ErrorCode::ERR_ALLOWED);
|
| }
|
|
|
| -void Sandbox::tryVsyscallProcess(void) {
|
| +void Sandbox::TryVsyscallProcess(void) {
|
| time_t current_time;
|
| // time() is implemented as a vsyscall. With an older glibc, with
|
| // vsyscall=emulate and some versions of the seccomp BPF patch
|
| @@ -120,15 +102,15 @@ void Sandbox::tryVsyscallProcess(void) {
|
| }
|
| }
|
|
|
| -bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(),
|
| - EvaluateSyscall syscallEvaluator,
|
| +bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(),
|
| + EvaluateSyscall syscall_evaluator,
|
| void *aux,
|
| int proc_fd) {
|
| // Block all signals before forking a child process. This prevents an
|
| // attacker from manipulating our test by sending us an unexpected signal.
|
| - sigset_t oldMask, newMask;
|
| - if (sigfillset(&newMask) ||
|
| - sigprocmask(SIG_BLOCK, &newMask, &oldMask)) {
|
| + sigset_t old_mask, new_mask;
|
| + if (sigfillset(&new_mask) ||
|
| + sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
|
| SANDBOX_DIE("sigprocmask() failed");
|
| }
|
| int fds[2];
|
| @@ -148,7 +130,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(),
|
| // But what we don't want to do is return "false", as a crafty
|
| // attacker might cause fork() to fail at will and could trick us
|
| // into running without a sandbox.
|
| - sigprocmask(SIG_SETMASK, &oldMask, NULL); // OK, if it fails
|
| + sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails
|
| SANDBOX_DIE("fork() failed unexpectedly");
|
| }
|
|
|
| @@ -191,18 +173,18 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(),
|
| }
|
|
|
| evaluators_.clear();
|
| - setSandboxPolicy(syscallEvaluator, aux);
|
| - setProcFd(proc_fd);
|
| + SetSandboxPolicy(syscall_evaluator, aux);
|
| + set_proc_fd(proc_fd);
|
|
|
| // By passing "quiet=true" to "startSandboxInternal()" we suppress
|
| // messages for expected and benign failures (e.g. if the current
|
| // kernel lacks support for BPF filters).
|
| - startSandboxInternal(true);
|
| + StartSandboxInternal(true);
|
|
|
| // Run our code in the sandbox.
|
| - CodeInSandbox();
|
| + code_in_sandbox();
|
|
|
| - // CodeInSandbox() is not supposed to return here.
|
| + // code_in_sandbox() is not supposed to return here.
|
| SANDBOX_DIE(NULL);
|
| }
|
|
|
| @@ -210,7 +192,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(),
|
| if (HANDLE_EINTR(close(fds[1]))) {
|
| SANDBOX_DIE("close() failed");
|
| }
|
| - if (sigprocmask(SIG_SETMASK, &oldMask, NULL)) {
|
| + if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) {
|
| SANDBOX_DIE("sigprocmask() failed");
|
| }
|
| int status;
|
| @@ -242,7 +224,7 @@ bool Sandbox::RunFunctionInPolicy(void (*CodeInSandbox)(),
|
| return rc;
|
| }
|
|
|
| -bool Sandbox::kernelSupportSeccompBPF(int proc_fd) {
|
| +bool Sandbox::KernelSupportSeccompBPF(int proc_fd) {
|
| #if defined(SECCOMP_BPF_VALGRIND_HACKS)
|
| if (RUNNING_ON_VALGRIND) {
|
| // Valgrind doesn't like our run-time test. Disable testing and assume we
|
| @@ -253,12 +235,12 @@ bool Sandbox::kernelSupportSeccompBPF(int proc_fd) {
|
| #endif
|
|
|
| return
|
| - RunFunctionInPolicy(probeProcess, Sandbox::probeEvaluator, 0, proc_fd) &&
|
| - RunFunctionInPolicy(tryVsyscallProcess, Sandbox::allowAllEvaluator, 0,
|
| + RunFunctionInPolicy(ProbeProcess, Sandbox::ProbeEvaluator, 0, proc_fd) &&
|
| + RunFunctionInPolicy(TryVsyscallProcess, Sandbox::AllowAllEvaluator, 0,
|
| proc_fd);
|
| }
|
|
|
| -Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) {
|
| +Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) {
|
| // It the sandbox is currently active, we clearly must have support for
|
| // sandboxing.
|
| if (status_ == STATUS_ENABLED) {
|
| @@ -268,13 +250,13 @@ Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) {
|
| // Even if the sandbox was previously available, something might have
|
| // changed in our run-time environment. Check one more time.
|
| if (status_ == STATUS_AVAILABLE) {
|
| - if (!isSingleThreaded(proc_fd)) {
|
| + if (!IsSingleThreaded(proc_fd)) {
|
| status_ = STATUS_UNAVAILABLE;
|
| }
|
| return status_;
|
| }
|
|
|
| - if (status_ == STATUS_UNAVAILABLE && isSingleThreaded(proc_fd)) {
|
| + if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) {
|
| // All state transitions resulting in STATUS_UNAVAILABLE are immediately
|
| // preceded by STATUS_AVAILABLE. Furthermore, these transitions all
|
| // happen, if and only if they are triggered by the process being multi-
|
| @@ -290,25 +272,25 @@ Sandbox::SandboxStatus Sandbox::supportsSeccompSandbox(int proc_fd) {
|
| // we otherwise don't believe to have a good cached value, we have to
|
| // perform a thorough check now.
|
| if (status_ == STATUS_UNKNOWN) {
|
| - status_ = kernelSupportSeccompBPF(proc_fd)
|
| + status_ = KernelSupportSeccompBPF(proc_fd)
|
| ? STATUS_AVAILABLE : STATUS_UNSUPPORTED;
|
|
|
| // As we are performing our tests from a child process, the run-time
|
| // environment that is visible to the sandbox is always guaranteed to be
|
| // single-threaded. Let's check here whether the caller is single-
|
| // threaded. Otherwise, we mark the sandbox as temporarily unavailable.
|
| - if (status_ == STATUS_AVAILABLE && !isSingleThreaded(proc_fd)) {
|
| + if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) {
|
| status_ = STATUS_UNAVAILABLE;
|
| }
|
| }
|
| return status_;
|
| }
|
|
|
| -void Sandbox::setProcFd(int proc_fd) {
|
| +void Sandbox::set_proc_fd(int proc_fd) {
|
| proc_fd_ = proc_fd;
|
| }
|
|
|
| -void Sandbox::startSandboxInternal(bool quiet) {
|
| +void Sandbox::StartSandboxInternal(bool quiet) {
|
| if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) {
|
| SANDBOX_DIE("Trying to start sandbox, even though it is known to be "
|
| "unavailable");
|
| @@ -323,7 +305,7 @@ void Sandbox::startSandboxInternal(bool quiet) {
|
| // For now, continue in degraded mode, if we can't access /proc.
|
| // In the future, we might want to tighten this requirement.
|
| }
|
| - if (!isSingleThreaded(proc_fd_)) {
|
| + if (!IsSingleThreaded(proc_fd_)) {
|
| SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded");
|
| }
|
|
|
| @@ -338,13 +320,13 @@ void Sandbox::startSandboxInternal(bool quiet) {
|
| }
|
|
|
| // Install the filters.
|
| - installFilter(quiet);
|
| + InstallFilter(quiet);
|
|
|
| // We are now inside the sandbox.
|
| status_ = STATUS_ENABLED;
|
| }
|
|
|
| -bool Sandbox::isSingleThreaded(int proc_fd) {
|
| +bool Sandbox::IsSingleThreaded(int proc_fd) {
|
| if (proc_fd < 0) {
|
| // Cannot determine whether program is single-threaded. Hope for
|
| // the best...
|
| @@ -365,17 +347,17 @@ bool Sandbox::isSingleThreaded(int proc_fd) {
|
| return true;
|
| }
|
|
|
| -bool Sandbox::isDenied(const ErrorCode& code) {
|
| +bool Sandbox::IsDenied(const ErrorCode& code) {
|
| return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
|
| (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
|
| code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
|
| }
|
|
|
| -void Sandbox::policySanityChecks(EvaluateSyscall syscallEvaluator,
|
| +void Sandbox::PolicySanityChecks(EvaluateSyscall syscall_evaluator,
|
| void *aux) {
|
| for (SyscallIterator iter(true); !iter.Done(); ) {
|
| uint32_t sysnum = iter.Next();
|
| - if (!isDenied(syscallEvaluator(sysnum, aux))) {
|
| + if (!IsDenied(syscall_evaluator(sysnum, aux))) {
|
| SANDBOX_DIE("Policies should deny system calls that are outside the "
|
| "expected range (typically MIN_SYSCALL..MAX_SYSCALL)");
|
| }
|
| @@ -386,8 +368,8 @@ void Sandbox::policySanityChecks(EvaluateSyscall syscallEvaluator,
|
| void Sandbox::CheckForUnsafeErrorCodes(Instruction *insn, void *aux) {
|
| if (BPF_CLASS(insn->code) == BPF_RET &&
|
| insn->k > SECCOMP_RET_TRAP &&
|
| - insn->k - SECCOMP_RET_TRAP <= trapArraySize_) {
|
| - const ErrorCode& err = trapArray_[insn->k - SECCOMP_RET_TRAP - 1];
|
| + insn->k - SECCOMP_RET_TRAP <= trap_array_size_) {
|
| + const ErrorCode& err = trap_array_[insn->k - SECCOMP_RET_TRAP - 1];
|
| if (!err.safe_) {
|
| bool *is_unsafe = static_cast<bool *>(aux);
|
| *is_unsafe = true;
|
| @@ -395,7 +377,7 @@ void Sandbox::CheckForUnsafeErrorCodes(Instruction *insn, void *aux) {
|
| }
|
| }
|
|
|
| -void Sandbox::RedirectToUserspace(Instruction *insn, void *aux) {
|
| +void Sandbox::RedirectToUserspace(Instruction *insn, void *) {
|
| // When inside an UnsafeTrap() callback, we want to allow all system calls.
|
| // This means, we must conditionally disable the sandbox -- and that's not
|
| // something that kernel-side BPF filters can do, as they cannot inspect
|
| @@ -425,15 +407,15 @@ ErrorCode Sandbox::RedirectToUserspaceEvalWrapper(int sysnum, void *aux) {
|
| return err;
|
| }
|
|
|
| -void Sandbox::setSandboxPolicy(EvaluateSyscall syscallEvaluator, void *aux) {
|
| +void Sandbox::SetSandboxPolicy(EvaluateSyscall syscall_evaluator, void *aux) {
|
| if (status_ == STATUS_ENABLED) {
|
| SANDBOX_DIE("Cannot change policy after sandbox has started");
|
| }
|
| - policySanityChecks(syscallEvaluator, aux);
|
| - evaluators_.push_back(std::make_pair(syscallEvaluator, aux));
|
| + PolicySanityChecks(syscall_evaluator, aux);
|
| + evaluators_.push_back(std::make_pair(syscall_evaluator, aux));
|
| }
|
|
|
| -void Sandbox::installFilter(bool quiet) {
|
| +void Sandbox::InstallFilter(bool quiet) {
|
| // Verify that the user pushed a policy.
|
| if (evaluators_.empty()) {
|
| filter_failed:
|
| @@ -443,7 +425,7 @@ void Sandbox::installFilter(bool quiet) {
|
| // Set new SIGSYS handler
|
| struct sigaction sa;
|
| memset(&sa, 0, sizeof(sa));
|
| - sa.sa_sigaction = sigSys;
|
| + sa.sa_sigaction = SigSys;
|
| sa.sa_flags = SA_SIGINFO | SA_NODEFER;
|
| if (sigaction(SIGSYS, &sa, NULL) < 0) {
|
| goto filter_failed;
|
| @@ -473,24 +455,22 @@ void Sandbox::installFilter(bool quiet) {
|
| // system call.
|
| Instruction *tail;
|
| Instruction *head =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - offsetof(struct arch_seccomp_data, arch),
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_ARCH_IDX,
|
| tail =
|
| gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, SECCOMP_ARCH,
|
| NULL,
|
| gen->MakeInstruction(BPF_RET+BPF_K,
|
| - Kill(
|
| - "Invalid audit architecture in BPF filter").err_)));
|
| + Kill("Invalid audit architecture in BPF filter"))));
|
|
|
| {
|
| // Evaluate all possible system calls and group their ErrorCodes into
|
| // ranges of identical codes.
|
| Ranges ranges;
|
| - findRanges(&ranges);
|
| + FindRanges(&ranges);
|
|
|
| // Compile the system call ranges to an optimized BPF jumptable
|
| Instruction *jumptable =
|
| - assembleJumpTable(gen, ranges.begin(), ranges.end());
|
| + AssembleJumpTable(gen, ranges.begin(), ranges.end());
|
|
|
| // If there is at least one UnsafeTrap() in our program, the entire sandbox
|
| // is unsafe. We need to modify the program so that all non-
|
| @@ -502,8 +482,7 @@ void Sandbox::installFilter(bool quiet) {
|
|
|
| // Grab the system call number, so that we can implement jump tables.
|
| Instruction *load_nr =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - offsetof(struct arch_seccomp_data, nr));
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_NR_IDX);
|
|
|
| // If our BPF program has unsafe jumps, enable support for them. This
|
| // test happens very early in the BPF filter program. Even before we
|
| @@ -550,21 +529,14 @@ void Sandbox::installFilter(bool quiet) {
|
| #endif
|
|
|
| // BPF cannot do native 64bit comparisons. On 64bit architectures, we
|
| - // have to compare both 32bit halfs of the instruction pointer. If they
|
| + // have to compare both 32bit halves of the instruction pointer. If they
|
| // match what we expect, we return ERR_ALLOWED. If either or both don't
|
| // match, we continue evalutating the rest of the sandbox policy.
|
| Instruction *escape_hatch =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - offsetof(struct arch_seccomp_data,
|
| - instruction_pointer) +
|
| - (__SIZEOF_POINTER__ > 4 &&
|
| - __BYTE_ORDER == __BIG_ENDIAN ? 4 : 0),
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_LSB_IDX,
|
| gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, low,
|
| #if __SIZEOF_POINTER__ > 4
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - offsetof(struct arch_seccomp_data,
|
| - instruction_pointer) +
|
| - (__BYTE_ORDER == __BIG_ENDIAN ? 0 : 4),
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_MSB_IDX,
|
| gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, hi,
|
| #endif
|
| gen->MakeInstruction(BPF_RET+BPF_K, ErrorCode(ErrorCode::ERR_ALLOWED)),
|
| @@ -646,6 +618,7 @@ void Sandbox::installFilter(bool quiet) {
|
|
|
| // Release memory that is no longer needed
|
| evaluators_.clear();
|
| + conds_.clear();
|
|
|
| #if defined(SECCOMP_BPF_VALGRIND_HACKS)
|
| // Valgrind is really not happy about our sandbox. Disable it when running
|
| @@ -667,36 +640,36 @@ void Sandbox::installFilter(bool quiet) {
|
| return;
|
| }
|
|
|
| -void Sandbox::findRanges(Ranges *ranges) {
|
| +void Sandbox::FindRanges(Ranges *ranges) {
|
| // Please note that "struct seccomp_data" defines system calls as a signed
|
| // int32_t, but BPF instructions always operate on unsigned quantities. We
|
| // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
|
| // and then verifying that the rest of the number range (both positive and
|
| // negative) all return the same ErrorCode.
|
| - EvaluateSyscall evaluateSyscall = evaluators_.begin()->first;
|
| - void *aux = evaluators_.begin()->second;
|
| - uint32_t oldSysnum = 0;
|
| - ErrorCode oldErr = evaluateSyscall(oldSysnum, aux);
|
| - ErrorCode invalidErr = evaluateSyscall(MIN_SYSCALL - 1, aux);
|
| + EvaluateSyscall evaluate_syscall = evaluators_.begin()->first;
|
| + void *aux = evaluators_.begin()->second;
|
| + uint32_t old_sysnum = 0;
|
| + ErrorCode old_err = evaluate_syscall(old_sysnum, aux);
|
| + ErrorCode invalid_err = evaluate_syscall(MIN_SYSCALL - 1, aux);
|
| for (SyscallIterator iter(false); !iter.Done(); ) {
|
| uint32_t sysnum = iter.Next();
|
| - ErrorCode err = evaluateSyscall(static_cast<int>(sysnum), aux);
|
| - if (!iter.IsValid(sysnum) && !invalidErr.Equals(err)) {
|
| + ErrorCode err = evaluate_syscall(static_cast<int>(sysnum), aux);
|
| + if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) {
|
| // A proper sandbox policy should always treat system calls outside of
|
| // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns
|
| // "false" for SyscallIterator::IsValid()) identically. Typically, all
|
| // of these system calls would be denied with the same ErrorCode.
|
| SANDBOX_DIE("Invalid seccomp policy");
|
| }
|
| - if (!err.Equals(oldErr) || iter.Done()) {
|
| - ranges->push_back(Range(oldSysnum, sysnum - 1, oldErr));
|
| - oldSysnum = sysnum;
|
| - oldErr = err;
|
| + if (!err.Equals(old_err) || iter.Done()) {
|
| + ranges->push_back(Range(old_sysnum, sysnum - 1, old_err));
|
| + old_sysnum = sysnum;
|
| + old_err = err;
|
| }
|
| }
|
| }
|
|
|
| -Instruction *Sandbox::assembleJumpTable(CodeGen *gen,
|
| +Instruction *Sandbox::AssembleJumpTable(CodeGen *gen,
|
| Ranges::const_iterator start,
|
| Ranges::const_iterator stop) {
|
| // We convert the list of system call ranges into jump table that performs
|
| @@ -708,7 +681,7 @@ Instruction *Sandbox::assembleJumpTable(CodeGen *gen,
|
| } else if (stop - start == 1) {
|
| // If we have narrowed things down to a single range object, we can
|
| // return from the BPF filter program.
|
| - return gen->MakeInstruction(BPF_RET+BPF_K, start->err);
|
| + return RetExpression(gen, start->err);
|
| }
|
|
|
| // Pick the range object that is located at the mid point of our list.
|
| @@ -718,18 +691,108 @@ Instruction *Sandbox::assembleJumpTable(CodeGen *gen,
|
| Ranges::const_iterator mid = start + (stop - start)/2;
|
|
|
| // Sub-divide the list of ranges and continue recursively.
|
| - Instruction *jf = assembleJumpTable(gen, start, mid);
|
| - Instruction *jt = assembleJumpTable(gen, mid, stop);
|
| + Instruction *jf = AssembleJumpTable(gen, start, mid);
|
| + Instruction *jt = AssembleJumpTable(gen, mid, stop);
|
| return gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, mid->from, jt, jf);
|
| }
|
|
|
| -void Sandbox::sigSys(int nr, siginfo_t *info, void *void_context) {
|
| +Instruction *Sandbox::RetExpression(CodeGen *gen, const ErrorCode& cond) {
|
| + if (cond.error_type_ == ErrorCode::ET_COND) {
|
| + return CondExpression(gen, cond);
|
| + } else {
|
| + return gen->MakeInstruction(BPF_RET+BPF_K, cond);
|
| + }
|
| +}
|
| +
|
| +Instruction *Sandbox::CondExpression(CodeGen *gen, const ErrorCode& cond) {
|
| + // We can only inspect the six system call arguments that are passed in
|
| + // CPU registers.
|
| + if (cond.argno_ < 0 || cond.argno_ >= 6) {
|
| + SANDBOX_DIE("Internal compiler error; invalid argument number "
|
| + "encountered");
|
| + }
|
| +
|
| + // BPF programs operate on 32bit entities. Load both halfs of the 64bit
|
| + // system call argument and then generate suitable conditional statements.
|
| + Instruction *msb_head =
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| + SECCOMP_ARG_MSB_IDX(cond.argno_));
|
| + Instruction *msb_tail = msb_head;
|
| + Instruction *lsb_head =
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| + SECCOMP_ARG_LSB_IDX(cond.argno_));
|
| + Instruction *lsb_tail = lsb_head;
|
| +
|
| + // Emit a suitable comparison statement.
|
| + switch (cond.op_) {
|
| + case ErrorCode::OP_EQUAL:
|
| + // Compare the least significant bits for equality
|
| + lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| + static_cast<uint32_t>(cond.value_),
|
| + RetExpression(gen, *cond.passed_),
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(lsb_head, lsb_tail);
|
| +
|
| + // If we are looking at a 64bit argument, we need to also compare the
|
| + // most significant bits.
|
| + if (cond.width_ == ErrorCode::TP_64BIT) {
|
| + msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| + static_cast<uint32_t>(cond.value_ >> 32),
|
| + NULL,
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(msb_head, msb_tail);
|
| + }
|
| + break;
|
| + default:
|
| + // TODO(markus): We can only check for equality so far.
|
| + SANDBOX_DIE("Not implemented");
|
| + break;
|
| + }
|
| +
|
| + // Ensure that we never pass a 64bit value, when we only expect a 32bit
|
| + // value. This is somewhat complicated by the fact that on 64bit systems,
|
| + // callers could legitimately pass in a non-zero value in the MSB, iff the
|
| + // LSB has been sign-extended into the MSB.
|
| + if (cond.width_ == ErrorCode::TP_32BIT) {
|
| + if (cond.value_ >> 32) {
|
| + SANDBOX_DIE("Invalid comparison of a 32bit system call argument "
|
| + "against a 64bit constant; this test is always false.");
|
| + }
|
| +
|
| + Instruction *invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
|
| + #if __SIZEOF_POINTER__ > 4
|
| + invalid_64bit =
|
| + gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0xFFFFFFFF,
|
| + gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| + SECCOMP_ARG_LSB_IDX(cond.argno_),
|
| + gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, 0x80000000,
|
| + lsb_head,
|
| + invalid_64bit)),
|
| + invalid_64bit);
|
| + #endif
|
| + gen->JoinInstructions(
|
| + msb_tail,
|
| + gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0,
|
| + lsb_head,
|
| + invalid_64bit));
|
| + } else {
|
| + gen->JoinInstructions(msb_tail, lsb_head);
|
| + }
|
| +
|
| + return msb_head;
|
| +}
|
| +
|
| +ErrorCode Sandbox::Unexpected64bitArgument() {
|
| + return Kill("Unexpected 64bit argument detected");
|
| +}
|
| +
|
| +void Sandbox::SigSys(int nr, siginfo_t *info, void *void_context) {
|
| // Various sanity checks to make sure we actually received a signal
|
| // triggered by a BPF filter. If something else triggered SIGSYS
|
| // (e.g. kill()), there is really nothing we can do with this signal.
|
| if (nr != SIGSYS || info->si_code != SYS_SECCOMP || !void_context ||
|
| info->si_errno <= 0 ||
|
| - static_cast<size_t>(info->si_errno) > trapArraySize_) {
|
| + static_cast<size_t>(info->si_errno) > trap_array_size_) {
|
| // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
|
| // safe and can lead to bugs. We should eventually implement a different
|
| // logging and reporting mechanism that is safe to be called from
|
| @@ -773,7 +836,7 @@ void Sandbox::sigSys(int nr, siginfo_t *info, void *void_context) {
|
| SECCOMP_PARM3(ctx), SECCOMP_PARM4(ctx),
|
| SECCOMP_PARM5(ctx), SECCOMP_PARM6(ctx));
|
| } else {
|
| - const ErrorCode& err = trapArray_[info->si_errno - 1];
|
| + const ErrorCode& err = trap_array_[info->si_errno - 1];
|
| if (!err.safe_) {
|
| SetIsInSigHandler();
|
| }
|
| @@ -824,9 +887,9 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux,
|
| // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
|
| // of a SECCOMP_RET_TRAP.
|
| TrapKey key(fnc, aux, safe);
|
| - TrapIds::const_iterator iter = trapIds_.find(key);
|
| + TrapIds::const_iterator iter = trap_ids_.find(key);
|
| uint16_t id;
|
| - if (iter != trapIds_.end()) {
|
| + if (iter != trap_ids_.end()) {
|
| // We have seen this pair before. Return the same id that we assigned
|
| // earlier.
|
| id = iter->second;
|
| @@ -847,7 +910,7 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux,
|
| id = traps_->size() + 1;
|
|
|
| traps_->push_back(ErrorCode(fnc, aux, safe, id));
|
| - trapIds_[key] = id;
|
| + trap_ids_[key] = id;
|
|
|
| // We want to access the traps_ vector from our signal handler. But
|
| // we are not assured that doing so is async-signal safe. On the other
|
| @@ -855,8 +918,8 @@ ErrorCode Sandbox::MakeTrap(ErrorCode::TrapFnc fnc, const void *aux,
|
| // contiguous C-style array.
|
| // So, we look up the address and size of this array outside of the
|
| // signal handler, where we can safely do so.
|
| - trapArray_ = &(*traps_)[0];
|
| - trapArraySize_ = id;
|
| + trap_array_ = &(*traps_)[0];
|
| + trap_array_size_ = id;
|
| return traps_->back();
|
| }
|
|
|
| @@ -890,21 +953,30 @@ intptr_t Sandbox::ReturnErrno(const struct arch_seccomp_data&, void *aux) {
|
| return -err;
|
| }
|
|
|
| -intptr_t Sandbox::bpfFailure(const struct arch_seccomp_data&, void *aux) {
|
| +ErrorCode Sandbox::Cond(int argno, ErrorCode::ArgType width,
|
| + ErrorCode::Operation op, uint64_t value,
|
| + const ErrorCode& passed, const ErrorCode& failed) {
|
| + return ErrorCode(argno, width, op, value,
|
| + &*conds_.insert(passed).first,
|
| + &*conds_.insert(failed).first);
|
| +}
|
| +
|
| +intptr_t Sandbox::BpfFailure(const struct arch_seccomp_data&, void *aux) {
|
| SANDBOX_DIE(static_cast<char *>(aux));
|
| }
|
|
|
| ErrorCode Sandbox::Kill(const char *msg) {
|
| - return Trap(bpfFailure, const_cast<char *>(msg));
|
| + return Trap(BpfFailure, const_cast<char *>(msg));
|
| }
|
|
|
| Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
|
| -int Sandbox::proc_fd_ = -1;
|
| +int Sandbox::proc_fd_ = -1;
|
| Sandbox::Evaluators Sandbox::evaluators_;
|
| Sandbox::Traps *Sandbox::traps_ = NULL;
|
| -Sandbox::TrapIds Sandbox::trapIds_;
|
| -ErrorCode *Sandbox::trapArray_ = NULL;
|
| -size_t Sandbox::trapArraySize_ = 0;
|
| +Sandbox::TrapIds Sandbox::trap_ids_;
|
| +ErrorCode *Sandbox::trap_array_ = NULL;
|
| +size_t Sandbox::trap_array_size_ = 0;
|
| bool Sandbox::has_unsafe_traps_ = false;
|
| +Sandbox::Conds Sandbox::conds_;
|
|
|
| } // namespace
|
|
|