| Index: media/base/channel_mixer.cc
|
| diff --git a/media/base/channel_mixer.cc b/media/base/channel_mixer.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5fd8f5976b4323a1c1dc92e73e1f6cad619c6ae2
|
| --- /dev/null
|
| +++ b/media/base/channel_mixer.cc
|
| @@ -0,0 +1,307 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +// MSVC++ requires this to be set before any other includes to get M_SQRT1_2.
|
| +#define _USE_MATH_DEFINES
|
| +
|
| +#include "media/base/channel_mixer.h"
|
| +
|
| +#include <algorithm>
|
| +#include <cmath>
|
| +
|
| +#include "base/logging.h"
|
| +#include "media/base/audio_bus.h"
|
| +#include "media/base/vector_math.h"
|
| +
|
| +namespace media {
|
| +
|
| +// Default scale factor for mixing two channels together. We use a different
|
| +// value for stereo -> mono and mono -> stereo mixes.
|
| +static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2);
|
| +
|
| +static int ValidateLayout(ChannelLayout layout) {
|
| + CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
|
| + CHECK_NE(layout, CHANNEL_LAYOUT_MAX);
|
| +
|
| + // TODO(dalecurtis, crogers): We will eventually handle unsupported layouts by
|
| + // simply copying the input channels to the output channels, similar to if the
|
| + // user requests identical input and output layouts today.
|
| + CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
|
| +
|
| + // Verify there's at least one channel. Should always be true here by virtue
|
| + // of not being one of the invalid layouts, but lets double check to be sure.
|
| + int channel_count = ChannelLayoutToChannelCount(layout);
|
| + DCHECK_GT(channel_count, 0);
|
| +
|
| + // If we have more than one channel, verify a symmetric layout for sanity.
|
| + // The unit test will verify all possible layouts, so this can be a DCHECK.
|
| + // Symmetry allows simplifying the matrix building code by allowing us to
|
| + // assume that if one channel of a pair exists, the other will too.
|
| + if (channel_count > 1) {
|
| + DCHECK((ChannelOrder(layout, LEFT) >= 0 &&
|
| + ChannelOrder(layout, RIGHT) >= 0) ||
|
| + (ChannelOrder(layout, SIDE_LEFT) >= 0 &&
|
| + ChannelOrder(layout, SIDE_RIGHT) >= 0) ||
|
| + (ChannelOrder(layout, BACK_LEFT) >= 0 &&
|
| + ChannelOrder(layout, BACK_RIGHT) >= 0) ||
|
| + (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 &&
|
| + ChannelOrder(layout, RIGHT_OF_CENTER) >= 0))
|
| + << "Non-symmetric channel layout encountered.";
|
| + } else {
|
| + DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
|
| + }
|
| +
|
| + return channel_count;
|
| +}
|
| +
|
| +ChannelMixer::ChannelMixer(ChannelLayout input, ChannelLayout output)
|
| + : input_layout_(input),
|
| + output_layout_(output),
|
| + remapping_(false) {
|
| + // Stereo down mix should never be the output layout.
|
| + CHECK_NE(output_layout_, CHANNEL_LAYOUT_STEREO_DOWNMIX);
|
| +
|
| + int input_channels = ValidateLayout(input_layout_);
|
| + int output_channels = ValidateLayout(output_layout_);
|
| +
|
| + // Size out the initial matrix.
|
| + matrix_.reserve(output_channels);
|
| + for (int output_ch = 0; output_ch < output_channels; ++output_ch)
|
| + matrix_.push_back(std::vector<float>(input_channels, 0));
|
| +
|
| + // Route matching channels and figure out which ones aren't accounted for.
|
| + for (Channels ch = LEFT; ch < CHANNELS_MAX;
|
| + ch = static_cast<Channels>(ch + 1)) {
|
| + int input_ch_index = ChannelOrder(input_layout_, ch);
|
| + int output_ch_index = ChannelOrder(output_layout_, ch);
|
| +
|
| + if (input_ch_index < 0)
|
| + continue;
|
| +
|
| + if (output_ch_index < 0) {
|
| + unaccounted_inputs_.push_back(ch);
|
| + continue;
|
| + }
|
| +
|
| + DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_.size());
|
| + DCHECK_LT(static_cast<size_t>(input_ch_index),
|
| + matrix_[output_ch_index].size());
|
| + matrix_[output_ch_index][input_ch_index] = 1;
|
| + }
|
| +
|
| + // If all input channels are accounted for, there's nothing left to do.
|
| + if (unaccounted_inputs_.empty()) {
|
| + // Since all output channels map directly to inputs we can optimize.
|
| + remapping_ = true;
|
| + return;
|
| + }
|
| +
|
| + // Mix front LR into center.
|
| + if (IsUnaccounted(LEFT)) {
|
| + // When down mixing to mono from stereo, we need to be careful of full scale
|
| + // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping
|
| + // so we use 1 / 2 instead.
|
| + float scale = (output == CHANNEL_LAYOUT_MONO && input_channels == 2) ?
|
| + 0.5 : kEqualPowerScale;
|
| + Mix(LEFT, CENTER, scale);
|
| + Mix(RIGHT, CENTER, scale);
|
| + }
|
| +
|
| + // Mix center into front LR.
|
| + if (IsUnaccounted(CENTER)) {
|
| + // When up mixing from mono, just do a copy to front LR.
|
| + float scale = (input == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale;
|
| + MixWithoutAccounting(CENTER, LEFT, scale);
|
| + Mix(CENTER, RIGHT, scale);
|
| + }
|
| +
|
| + // Mix back LR into: side LR || back center || front LR || front center.
|
| + if (IsUnaccounted(BACK_LEFT)) {
|
| + if (HasOutputChannel(SIDE_LEFT)) {
|
| + // If we have side LR, mix back LR into side LR, but instead if the input
|
| + // doesn't have side LR (but output does) copy back LR to side LR.
|
| + float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1;
|
| + Mix(BACK_LEFT, SIDE_LEFT, scale);
|
| + Mix(BACK_RIGHT, SIDE_RIGHT, scale);
|
| + } else if (HasOutputChannel(BACK_CENTER)) {
|
| + // Mix back LR into back center.
|
| + Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale);
|
| + Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale);
|
| + } else if (output > CHANNEL_LAYOUT_MONO) {
|
| + // Mix back LR into front LR.
|
| + Mix(BACK_LEFT, LEFT, kEqualPowerScale);
|
| + Mix(BACK_RIGHT, RIGHT, kEqualPowerScale);
|
| + } else {
|
| + // Mix back LR into front center.
|
| + Mix(BACK_LEFT, CENTER, kEqualPowerScale);
|
| + Mix(BACK_RIGHT, CENTER, kEqualPowerScale);
|
| + }
|
| + }
|
| +
|
| + // Mix side LR into: back LR || back center || front LR || front center.
|
| + if (IsUnaccounted(SIDE_LEFT)) {
|
| + if (HasOutputChannel(BACK_LEFT)) {
|
| + // If we have back LR, mix side LR into back LR, but instead if the input
|
| + // doesn't have back LR (but output does) copy side LR to back LR.
|
| + float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1;
|
| + Mix(SIDE_LEFT, BACK_LEFT, scale);
|
| + Mix(SIDE_RIGHT, BACK_RIGHT, scale);
|
| + } else if (HasOutputChannel(BACK_CENTER)) {
|
| + // Mix side LR into back center.
|
| + Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale);
|
| + Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale);
|
| + } else if (output > CHANNEL_LAYOUT_MONO) {
|
| + // Mix side LR into front LR.
|
| + Mix(SIDE_LEFT, LEFT, kEqualPowerScale);
|
| + Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale);
|
| + } else {
|
| + // Mix side LR into front center.
|
| + Mix(SIDE_LEFT, CENTER, kEqualPowerScale);
|
| + Mix(SIDE_RIGHT, CENTER, kEqualPowerScale);
|
| + }
|
| + }
|
| +
|
| + // Mix back center into: back LR || side LR || front LR || front center.
|
| + if (IsUnaccounted(BACK_CENTER)) {
|
| + if (HasOutputChannel(BACK_LEFT)) {
|
| + // Mix back center into back LR.
|
| + MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale);
|
| + Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale);
|
| + } else if (HasOutputChannel(SIDE_LEFT)) {
|
| + // Mix back center into side LR.
|
| + MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale);
|
| + Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale);
|
| + } else if (output > CHANNEL_LAYOUT_MONO) {
|
| + // Mix back center into front LR.
|
| + // TODO(dalecurtis): Not sure about these values?
|
| + MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale);
|
| + Mix(BACK_CENTER, RIGHT, kEqualPowerScale);
|
| + } else {
|
| + // Mix back center into front center.
|
| + // TODO(dalecurtis): Not sure about these values?
|
| + Mix(BACK_CENTER, CENTER, kEqualPowerScale);
|
| + }
|
| + }
|
| +
|
| + // Mix LR of center into: front center || front LR.
|
| + if (IsUnaccounted(LEFT_OF_CENTER)) {
|
| + if (HasOutputChannel(CENTER)) {
|
| + // Mix LR of center into front center.
|
| + Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale);
|
| + Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale);
|
| + } else {
|
| + // Mix LR of center into front LR.
|
| + Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale);
|
| + Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale);
|
| + }
|
| + }
|
| +
|
| + // Mix LFE into: front LR || front center.
|
| + if (IsUnaccounted(LFE)) {
|
| + if (!HasOutputChannel(CENTER)) {
|
| + // Mix LFE into front LR.
|
| + MixWithoutAccounting(LFE, LEFT, kEqualPowerScale);
|
| + Mix(LFE, RIGHT, kEqualPowerScale);
|
| + } else {
|
| + // Mix LFE into front center.
|
| + Mix(LFE, CENTER, kEqualPowerScale);
|
| + }
|
| + }
|
| +
|
| + // All channels should now be accounted for.
|
| + DCHECK(unaccounted_inputs_.empty());
|
| +
|
| + // See if the output |matrix_| is simply a remapping matrix. If each input
|
| + // channel maps to a single output channel we can simply remap. Doing this
|
| + // programmatically is less fragile than logic checks on channel mappings.
|
| + for (int output_ch = 0; output_ch < output_channels; ++output_ch) {
|
| + int input_mappings = 0;
|
| + for (int input_ch = 0; input_ch < input_channels; ++input_ch) {
|
| + // We can only remap if each row contains a single scale of 1. I.e., each
|
| + // output channel is mapped from a single unscaled input channel.
|
| + if (matrix_[output_ch][input_ch] != 1 || ++input_mappings > 1)
|
| + return;
|
| + }
|
| + }
|
| +
|
| + // If we've gotten here, |matrix_| is simply a remapping.
|
| + remapping_ = true;
|
| +}
|
| +
|
| +ChannelMixer::~ChannelMixer() {}
|
| +
|
| +void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) {
|
| + CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels()));
|
| + CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels()));
|
| + CHECK_EQ(input->frames(), output->frames());
|
| +
|
| + // Zero initialize |output| so we're accumulating from zero.
|
| + output->Zero();
|
| +
|
| + // If we're just remapping we can simply copy the correct input to output.
|
| + if (remapping_) {
|
| + for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
|
| + for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
|
| + float scale = matrix_[output_ch][input_ch];
|
| + if (scale > 0) {
|
| + DCHECK_EQ(scale, 1.0f);
|
| + memcpy(output->channel(output_ch), input->channel(input_ch),
|
| + sizeof(*output->channel(output_ch)) * output->frames());
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + return;
|
| + }
|
| +
|
| + for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
|
| + for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
|
| + float scale = matrix_[output_ch][input_ch];
|
| + // Scale should always be positive. Don't bother scaling by zero.
|
| + DCHECK_GE(scale, 0);
|
| + if (scale > 0) {
|
| + vector_math::FMAC(input->channel(input_ch), scale, output->frames(),
|
| + output->channel(output_ch));
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void ChannelMixer::AccountFor(Channels ch) {
|
| + unaccounted_inputs_.erase(std::find(
|
| + unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
|
| +}
|
| +
|
| +bool ChannelMixer::IsUnaccounted(Channels ch) {
|
| + return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
|
| + ch) != unaccounted_inputs_.end();
|
| +}
|
| +
|
| +bool ChannelMixer::HasInputChannel(Channels ch) {
|
| + return ChannelOrder(input_layout_, ch) >= 0;
|
| +}
|
| +
|
| +bool ChannelMixer::HasOutputChannel(Channels ch) {
|
| + return ChannelOrder(output_layout_, ch) >= 0;
|
| +}
|
| +
|
| +void ChannelMixer::Mix(Channels input_ch, Channels output_ch, float scale) {
|
| + MixWithoutAccounting(input_ch, output_ch, scale);
|
| + AccountFor(input_ch);
|
| +}
|
| +
|
| +void ChannelMixer::MixWithoutAccounting(Channels input_ch, Channels output_ch,
|
| + float scale) {
|
| + int input_ch_index = ChannelOrder(input_layout_, input_ch);
|
| + int output_ch_index = ChannelOrder(output_layout_, output_ch);
|
| +
|
| + DCHECK(IsUnaccounted(input_ch));
|
| + DCHECK_GE(input_ch_index, 0);
|
| + DCHECK_GE(output_ch_index, 0);
|
| +
|
| + DCHECK_EQ(matrix_[output_ch_index][input_ch_index], 0);
|
| + matrix_[output_ch_index][input_ch_index] = scale;
|
| +}
|
| +
|
| +} // namespace media
|
|
|