OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // MSVC++ requires this to be set before any other includes to get M_SQRT1_2. |
| 6 #define _USE_MATH_DEFINES |
| 7 |
| 8 #include "media/base/channel_mixer.h" |
| 9 |
| 10 #include <algorithm> |
| 11 #include <cmath> |
| 12 |
| 13 #include "base/logging.h" |
| 14 #include "media/base/audio_bus.h" |
| 15 #include "media/base/vector_math.h" |
| 16 |
| 17 namespace media { |
| 18 |
| 19 // Default scale factor for mixing two channels together. We use a different |
| 20 // value for stereo -> mono and mono -> stereo mixes. |
| 21 static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2); |
| 22 |
| 23 static int ValidateLayout(ChannelLayout layout) { |
| 24 CHECK_NE(layout, CHANNEL_LAYOUT_NONE); |
| 25 CHECK_NE(layout, CHANNEL_LAYOUT_MAX); |
| 26 |
| 27 // TODO(dalecurtis, crogers): We will eventually handle unsupported layouts by |
| 28 // simply copying the input channels to the output channels, similar to if the |
| 29 // user requests identical input and output layouts today. |
| 30 CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); |
| 31 |
| 32 // Verify there's at least one channel. Should always be true here by virtue |
| 33 // of not being one of the invalid layouts, but lets double check to be sure. |
| 34 int channel_count = ChannelLayoutToChannelCount(layout); |
| 35 DCHECK_GT(channel_count, 0); |
| 36 |
| 37 // If we have more than one channel, verify a symmetric layout for sanity. |
| 38 // The unit test will verify all possible layouts, so this can be a DCHECK. |
| 39 // Symmetry allows simplifying the matrix building code by allowing us to |
| 40 // assume that if one channel of a pair exists, the other will too. |
| 41 if (channel_count > 1) { |
| 42 DCHECK((ChannelOrder(layout, LEFT) >= 0 && |
| 43 ChannelOrder(layout, RIGHT) >= 0) || |
| 44 (ChannelOrder(layout, SIDE_LEFT) >= 0 && |
| 45 ChannelOrder(layout, SIDE_RIGHT) >= 0) || |
| 46 (ChannelOrder(layout, BACK_LEFT) >= 0 && |
| 47 ChannelOrder(layout, BACK_RIGHT) >= 0) || |
| 48 (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 && |
| 49 ChannelOrder(layout, RIGHT_OF_CENTER) >= 0)) |
| 50 << "Non-symmetric channel layout encountered."; |
| 51 } else { |
| 52 DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); |
| 53 } |
| 54 |
| 55 return channel_count; |
| 56 } |
| 57 |
| 58 ChannelMixer::ChannelMixer(ChannelLayout input, ChannelLayout output) |
| 59 : input_layout_(input), |
| 60 output_layout_(output), |
| 61 remapping_(false) { |
| 62 // Stereo down mix should never be the output layout. |
| 63 CHECK_NE(output_layout_, CHANNEL_LAYOUT_STEREO_DOWNMIX); |
| 64 |
| 65 int input_channels = ValidateLayout(input_layout_); |
| 66 int output_channels = ValidateLayout(output_layout_); |
| 67 |
| 68 // Size out the initial matrix. |
| 69 matrix_.reserve(output_channels); |
| 70 for (int output_ch = 0; output_ch < output_channels; ++output_ch) |
| 71 matrix_.push_back(std::vector<float>(input_channels, 0)); |
| 72 |
| 73 // Route matching channels and figure out which ones aren't accounted for. |
| 74 for (Channels ch = LEFT; ch < CHANNELS_MAX; |
| 75 ch = static_cast<Channels>(ch + 1)) { |
| 76 int input_ch_index = ChannelOrder(input_layout_, ch); |
| 77 int output_ch_index = ChannelOrder(output_layout_, ch); |
| 78 |
| 79 if (input_ch_index < 0) |
| 80 continue; |
| 81 |
| 82 if (output_ch_index < 0) { |
| 83 unaccounted_inputs_.push_back(ch); |
| 84 continue; |
| 85 } |
| 86 |
| 87 DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_.size()); |
| 88 DCHECK_LT(static_cast<size_t>(input_ch_index), |
| 89 matrix_[output_ch_index].size()); |
| 90 matrix_[output_ch_index][input_ch_index] = 1; |
| 91 } |
| 92 |
| 93 // If all input channels are accounted for, there's nothing left to do. |
| 94 if (unaccounted_inputs_.empty()) { |
| 95 // Since all output channels map directly to inputs we can optimize. |
| 96 remapping_ = true; |
| 97 return; |
| 98 } |
| 99 |
| 100 // Mix front LR into center. |
| 101 if (IsUnaccounted(LEFT)) { |
| 102 // When down mixing to mono from stereo, we need to be careful of full scale |
| 103 // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping |
| 104 // so we use 1 / 2 instead. |
| 105 float scale = (output == CHANNEL_LAYOUT_MONO && input_channels == 2) ? |
| 106 0.5 : kEqualPowerScale; |
| 107 Mix(LEFT, CENTER, scale); |
| 108 Mix(RIGHT, CENTER, scale); |
| 109 } |
| 110 |
| 111 // Mix center into front LR. |
| 112 if (IsUnaccounted(CENTER)) { |
| 113 // When up mixing from mono, just do a copy to front LR. |
| 114 float scale = (input == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale; |
| 115 MixWithoutAccounting(CENTER, LEFT, scale); |
| 116 Mix(CENTER, RIGHT, scale); |
| 117 } |
| 118 |
| 119 // Mix back LR into: side LR || back center || front LR || front center. |
| 120 if (IsUnaccounted(BACK_LEFT)) { |
| 121 if (HasOutputChannel(SIDE_LEFT)) { |
| 122 // If we have side LR, mix back LR into side LR, but instead if the input |
| 123 // doesn't have side LR (but output does) copy back LR to side LR. |
| 124 float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1; |
| 125 Mix(BACK_LEFT, SIDE_LEFT, scale); |
| 126 Mix(BACK_RIGHT, SIDE_RIGHT, scale); |
| 127 } else if (HasOutputChannel(BACK_CENTER)) { |
| 128 // Mix back LR into back center. |
| 129 Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale); |
| 130 Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale); |
| 131 } else if (output > CHANNEL_LAYOUT_MONO) { |
| 132 // Mix back LR into front LR. |
| 133 Mix(BACK_LEFT, LEFT, kEqualPowerScale); |
| 134 Mix(BACK_RIGHT, RIGHT, kEqualPowerScale); |
| 135 } else { |
| 136 // Mix back LR into front center. |
| 137 Mix(BACK_LEFT, CENTER, kEqualPowerScale); |
| 138 Mix(BACK_RIGHT, CENTER, kEqualPowerScale); |
| 139 } |
| 140 } |
| 141 |
| 142 // Mix side LR into: back LR || back center || front LR || front center. |
| 143 if (IsUnaccounted(SIDE_LEFT)) { |
| 144 if (HasOutputChannel(BACK_LEFT)) { |
| 145 // If we have back LR, mix side LR into back LR, but instead if the input |
| 146 // doesn't have back LR (but output does) copy side LR to back LR. |
| 147 float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1; |
| 148 Mix(SIDE_LEFT, BACK_LEFT, scale); |
| 149 Mix(SIDE_RIGHT, BACK_RIGHT, scale); |
| 150 } else if (HasOutputChannel(BACK_CENTER)) { |
| 151 // Mix side LR into back center. |
| 152 Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale); |
| 153 Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale); |
| 154 } else if (output > CHANNEL_LAYOUT_MONO) { |
| 155 // Mix side LR into front LR. |
| 156 Mix(SIDE_LEFT, LEFT, kEqualPowerScale); |
| 157 Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale); |
| 158 } else { |
| 159 // Mix side LR into front center. |
| 160 Mix(SIDE_LEFT, CENTER, kEqualPowerScale); |
| 161 Mix(SIDE_RIGHT, CENTER, kEqualPowerScale); |
| 162 } |
| 163 } |
| 164 |
| 165 // Mix back center into: back LR || side LR || front LR || front center. |
| 166 if (IsUnaccounted(BACK_CENTER)) { |
| 167 if (HasOutputChannel(BACK_LEFT)) { |
| 168 // Mix back center into back LR. |
| 169 MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale); |
| 170 Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale); |
| 171 } else if (HasOutputChannel(SIDE_LEFT)) { |
| 172 // Mix back center into side LR. |
| 173 MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale); |
| 174 Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale); |
| 175 } else if (output > CHANNEL_LAYOUT_MONO) { |
| 176 // Mix back center into front LR. |
| 177 // TODO(dalecurtis): Not sure about these values? |
| 178 MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale); |
| 179 Mix(BACK_CENTER, RIGHT, kEqualPowerScale); |
| 180 } else { |
| 181 // Mix back center into front center. |
| 182 // TODO(dalecurtis): Not sure about these values? |
| 183 Mix(BACK_CENTER, CENTER, kEqualPowerScale); |
| 184 } |
| 185 } |
| 186 |
| 187 // Mix LR of center into: front center || front LR. |
| 188 if (IsUnaccounted(LEFT_OF_CENTER)) { |
| 189 if (HasOutputChannel(CENTER)) { |
| 190 // Mix LR of center into front center. |
| 191 Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale); |
| 192 Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale); |
| 193 } else { |
| 194 // Mix LR of center into front LR. |
| 195 Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale); |
| 196 Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale); |
| 197 } |
| 198 } |
| 199 |
| 200 // Mix LFE into: front LR || front center. |
| 201 if (IsUnaccounted(LFE)) { |
| 202 if (!HasOutputChannel(CENTER)) { |
| 203 // Mix LFE into front LR. |
| 204 MixWithoutAccounting(LFE, LEFT, kEqualPowerScale); |
| 205 Mix(LFE, RIGHT, kEqualPowerScale); |
| 206 } else { |
| 207 // Mix LFE into front center. |
| 208 Mix(LFE, CENTER, kEqualPowerScale); |
| 209 } |
| 210 } |
| 211 |
| 212 // All channels should now be accounted for. |
| 213 DCHECK(unaccounted_inputs_.empty()); |
| 214 |
| 215 // See if the output |matrix_| is simply a remapping matrix. If each input |
| 216 // channel maps to a single output channel we can simply remap. Doing this |
| 217 // programmatically is less fragile than logic checks on channel mappings. |
| 218 for (int output_ch = 0; output_ch < output_channels; ++output_ch) { |
| 219 int input_mappings = 0; |
| 220 for (int input_ch = 0; input_ch < input_channels; ++input_ch) { |
| 221 // We can only remap if each row contains a single scale of 1. I.e., each |
| 222 // output channel is mapped from a single unscaled input channel. |
| 223 if (matrix_[output_ch][input_ch] != 1 || ++input_mappings > 1) |
| 224 return; |
| 225 } |
| 226 } |
| 227 |
| 228 // If we've gotten here, |matrix_| is simply a remapping. |
| 229 remapping_ = true; |
| 230 } |
| 231 |
| 232 ChannelMixer::~ChannelMixer() {} |
| 233 |
| 234 void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) { |
| 235 CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels())); |
| 236 CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels())); |
| 237 CHECK_EQ(input->frames(), output->frames()); |
| 238 |
| 239 // Zero initialize |output| so we're accumulating from zero. |
| 240 output->Zero(); |
| 241 |
| 242 // If we're just remapping we can simply copy the correct input to output. |
| 243 if (remapping_) { |
| 244 for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { |
| 245 for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { |
| 246 float scale = matrix_[output_ch][input_ch]; |
| 247 if (scale > 0) { |
| 248 DCHECK_EQ(scale, 1.0f); |
| 249 memcpy(output->channel(output_ch), input->channel(input_ch), |
| 250 sizeof(*output->channel(output_ch)) * output->frames()); |
| 251 break; |
| 252 } |
| 253 } |
| 254 } |
| 255 return; |
| 256 } |
| 257 |
| 258 for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { |
| 259 for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { |
| 260 float scale = matrix_[output_ch][input_ch]; |
| 261 // Scale should always be positive. Don't bother scaling by zero. |
| 262 DCHECK_GE(scale, 0); |
| 263 if (scale > 0) { |
| 264 vector_math::FMAC(input->channel(input_ch), scale, output->frames(), |
| 265 output->channel(output_ch)); |
| 266 } |
| 267 } |
| 268 } |
| 269 } |
| 270 |
| 271 void ChannelMixer::AccountFor(Channels ch) { |
| 272 unaccounted_inputs_.erase(std::find( |
| 273 unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); |
| 274 } |
| 275 |
| 276 bool ChannelMixer::IsUnaccounted(Channels ch) { |
| 277 return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), |
| 278 ch) != unaccounted_inputs_.end(); |
| 279 } |
| 280 |
| 281 bool ChannelMixer::HasInputChannel(Channels ch) { |
| 282 return ChannelOrder(input_layout_, ch) >= 0; |
| 283 } |
| 284 |
| 285 bool ChannelMixer::HasOutputChannel(Channels ch) { |
| 286 return ChannelOrder(output_layout_, ch) >= 0; |
| 287 } |
| 288 |
| 289 void ChannelMixer::Mix(Channels input_ch, Channels output_ch, float scale) { |
| 290 MixWithoutAccounting(input_ch, output_ch, scale); |
| 291 AccountFor(input_ch); |
| 292 } |
| 293 |
| 294 void ChannelMixer::MixWithoutAccounting(Channels input_ch, Channels output_ch, |
| 295 float scale) { |
| 296 int input_ch_index = ChannelOrder(input_layout_, input_ch); |
| 297 int output_ch_index = ChannelOrder(output_layout_, output_ch); |
| 298 |
| 299 DCHECK(IsUnaccounted(input_ch)); |
| 300 DCHECK_GE(input_ch_index, 0); |
| 301 DCHECK_GE(output_ch_index, 0); |
| 302 |
| 303 DCHECK_EQ(matrix_[output_ch_index][input_ch_index], 0); |
| 304 matrix_[output_ch_index][input_ch_index] = scale; |
| 305 } |
| 306 |
| 307 } // namespace media |
OLD | NEW |