Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(63)

Side by Side Diff: obsolete/breakpad/google_breakpad/processor/minidump.h

Issue 10928195: First round of dead file removal (Closed) Base URL: https://github.com/samclegg/nativeclient-sdk.git@master
Patch Set: Created 8 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2010 Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // minidump.h: A minidump reader.
31 //
32 // The basic structure of this module tracks the structure of the minidump
33 // file itself. At the top level, a minidump file is represented by a
34 // Minidump object. Like most other classes in this module, Minidump
35 // provides a Read method that initializes the object with information from
36 // the file. Most of the classes in this file are wrappers around the
37 // "raw" structures found in the minidump file itself, and defined in
38 // minidump_format.h. For example, each thread is represented by a
39 // MinidumpThread object, whose parameters are specified in an MDRawThread
40 // structure. A properly byte-swapped MDRawThread can be obtained from a
41 // MinidumpThread easily by calling its thread() method.
42 //
43 // Most of the module lazily reads only the portion of the minidump file
44 // necessary to fulfill the user's request. Calling Minidump::Read
45 // only reads the minidump's directory. The thread list is not read until
46 // it is needed, and even once it's read, the memory regions for each
47 // thread's stack aren't read until they're needed. This strategy avoids
48 // unnecessary file input, and allocating memory for data in which the user
49 // has no interest. Note that although memory allocations for a typical
50 // minidump file are not particularly large, it is possible for legitimate
51 // minidumps to be sizable. A full-memory minidump, for example, contains
52 // a snapshot of the entire mapped memory space. Even a normal minidump,
53 // with stack memory only, can be large if, for example, the dump was
54 // generated in response to a crash that occurred due to an infinite-
55 // recursion bug that caused the stack's limits to be exceeded. Finally,
56 // some users of this library will unfortunately find themselves in the
57 // position of having to process potentially-hostile minidumps that might
58 // attempt to cause problems by forcing the minidump processor to over-
59 // allocate memory.
60 //
61 // Memory management in this module is based on a strict
62 // you-don't-own-anything policy. The only object owned by the user is
63 // the top-level Minidump object, the creation and destruction of which
64 // must be the user's own responsibility. All other objects obtained
65 // through interaction with this module are ultimately owned by the
66 // Minidump object, and will be freed upon the Minidump object's destruction.
67 // Because memory regions can potentially involve large allocations, a
68 // FreeMemory method is provided by MinidumpMemoryRegion, allowing the user
69 // to release data when it is no longer needed. Use of this method is
70 // optional but recommended. If freed data is later required, it will
71 // be read back in from the minidump file again.
72 //
73 // There is one exception to this memory management policy:
74 // Minidump::ReadString will return a string object to the user, and the user
75 // is responsible for its deletion.
76 //
77 // Author: Mark Mentovai
78
79 #ifndef GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
80 #define GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
81
82 #include <unistd.h>
83
84 #include <iostream>
85 #include <map>
86 #include <string>
87 #include <vector>
88
89 #include "google_breakpad/common/minidump_format.h"
90 #include "google_breakpad/processor/code_module.h"
91 #include "google_breakpad/processor/code_modules.h"
92 #include "google_breakpad/processor/memory_region.h"
93
94
95 namespace google_breakpad {
96
97
98 using std::map;
99 using std::string;
100 using std::vector;
101
102
103 class Minidump;
104 template<typename AddressType, typename EntryType> class RangeMap;
105
106
107 // MinidumpObject is the base of all Minidump* objects except for Minidump
108 // itself.
109 class MinidumpObject {
110 public:
111 virtual ~MinidumpObject() {}
112
113 bool valid() const { return valid_; }
114
115 protected:
116 explicit MinidumpObject(Minidump* minidump);
117
118 // Refers to the Minidump object that is the ultimate parent of this
119 // Some MinidumpObjects are owned by other MinidumpObjects, but at the
120 // root of the ownership tree is always a Minidump. The Minidump object
121 // is kept here for access to its seeking and reading facilities, and
122 // for access to data about the minidump file itself, such as whether
123 // it should be byte-swapped.
124 Minidump* minidump_;
125
126 // MinidumpObjects are not valid when created. When a subclass populates
127 // its own fields, it can set valid_ to true. Accessors and mutators may
128 // wish to consider or alter the valid_ state as they interact with
129 // objects.
130 bool valid_;
131 };
132
133
134 // This class exists primarily to provide a virtual destructor in a base
135 // class common to all objects that might be stored in
136 // Minidump::mStreamObjects. Some object types (MinidumpContext) will
137 // never be stored in Minidump::mStreamObjects, but are represented as
138 // streams and adhere to the same interface, and may be derived from
139 // this class.
140 class MinidumpStream : public MinidumpObject {
141 public:
142 virtual ~MinidumpStream() {}
143
144 protected:
145 explicit MinidumpStream(Minidump* minidump);
146
147 private:
148 // Populate (and validate) the MinidumpStream. minidump_ is expected
149 // to be positioned at the beginning of the stream, so that the next
150 // read from the minidump will be at the beginning of the stream.
151 // expected_size should be set to the stream's length as contained in
152 // the MDRawDirectory record or other identifying record. A class
153 // that implements MinidumpStream can compare expected_size to a
154 // known size as an integrity check.
155 virtual bool Read(u_int32_t expected_size) = 0;
156 };
157
158
159 // MinidumpContext carries a CPU-specific MDRawContext structure, which
160 // contains CPU context such as register states. Each thread has its
161 // own context, and the exception record, if present, also has its own
162 // context. Note that if the exception record is present, the context it
163 // refers to is probably what the user wants to use for the exception
164 // thread, instead of that thread's own context. The exception thread's
165 // context (as opposed to the exception record's context) will contain
166 // context for the exception handler (which performs minidump generation),
167 // and not the context that caused the exception (which is probably what the
168 // user wants).
169 class MinidumpContext : public MinidumpStream {
170 public:
171 virtual ~MinidumpContext();
172
173 // Returns an MD_CONTEXT_* value such as MD_CONTEXT_X86 or MD_CONTEXT_PPC
174 // identifying the CPU type that the context was collected from. The
175 // returned value will identify the CPU only, and will have any other
176 // MD_CONTEXT_* bits masked out. Returns 0 on failure.
177 u_int32_t GetContextCPU() const;
178
179 // Returns raw CPU-specific context data for the named CPU type. If the
180 // context data does not match the CPU type or does not exist, returns
181 // NULL.
182 const MDRawContextAMD64* GetContextAMD64() const;
183 const MDRawContextARM* GetContextARM() const;
184 const MDRawContextPPC* GetContextPPC() const;
185 const MDRawContextSPARC* GetContextSPARC() const;
186 const MDRawContextX86* GetContextX86() const;
187
188 // Print a human-readable representation of the object to stdout.
189 void Print();
190
191 private:
192 friend class MinidumpThread;
193 friend class MinidumpException;
194
195 explicit MinidumpContext(Minidump* minidump);
196
197 bool Read(u_int32_t expected_size);
198
199 // Free the CPU-specific context structure.
200 void FreeContext();
201
202 // If the minidump contains a SYSTEM_INFO_STREAM, makes sure that the
203 // system info stream gives an appropriate CPU type matching the context
204 // CPU type in context_cpu_type. Returns false if the CPU type does not
205 // match. Returns true if the CPU type matches or if the minidump does
206 // not contain a system info stream.
207 bool CheckAgainstSystemInfo(u_int32_t context_cpu_type);
208
209 // Store this separately because of the weirdo AMD64 context
210 u_int32_t context_flags_;
211
212 // The CPU-specific context structure.
213 union {
214 MDRawContextBase* base;
215 MDRawContextX86* x86;
216 MDRawContextPPC* ppc;
217 MDRawContextAMD64* amd64;
218 // on Solaris SPARC, sparc is defined as a numeric constant,
219 // so variables can NOT be named as sparc
220 MDRawContextSPARC* ctx_sparc;
221 MDRawContextARM* arm;
222 } context_;
223 };
224
225
226 // MinidumpMemoryRegion does not wrap any MDRaw structure, and only contains
227 // a reference to an MDMemoryDescriptor. This object is intended to wrap
228 // portions of a minidump file that contain memory dumps. In normal
229 // minidumps, each MinidumpThread owns a MinidumpMemoryRegion corresponding
230 // to the thread's stack memory. MinidumpMemoryList also gives access to
231 // memory regions in its list as MinidumpMemoryRegions. This class
232 // adheres to MemoryRegion so that it may be used as a data provider to
233 // the Stackwalker family of classes.
234 class MinidumpMemoryRegion : public MinidumpObject,
235 public MemoryRegion {
236 public:
237 virtual ~MinidumpMemoryRegion();
238
239 static void set_max_bytes(u_int32_t max_bytes) { max_bytes_ = max_bytes; }
240 static u_int32_t max_bytes() { return max_bytes_; }
241
242 // Returns a pointer to the base of the memory region. Returns the
243 // cached value if available, otherwise, reads the minidump file and
244 // caches the memory region.
245 const u_int8_t* GetMemory() const;
246
247 // The address of the base of the memory region.
248 u_int64_t GetBase() const;
249
250 // The size, in bytes, of the memory region.
251 u_int32_t GetSize() const;
252
253 // Frees the cached memory region, if cached.
254 void FreeMemory();
255
256 // Obtains the value of memory at the pointer specified by address.
257 bool GetMemoryAtAddress(u_int64_t address, u_int8_t* value) const;
258 bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value) const;
259 bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value) const;
260 bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value) const;
261
262 // Print a human-readable representation of the object to stdout.
263 void Print();
264
265 private:
266 friend class MinidumpThread;
267 friend class MinidumpMemoryList;
268
269 explicit MinidumpMemoryRegion(Minidump* minidump);
270
271 // Identify the base address and size of the memory region, and the
272 // location it may be found in the minidump file.
273 void SetDescriptor(MDMemoryDescriptor* descriptor);
274
275 // Implementation for GetMemoryAtAddress
276 template<typename T> bool GetMemoryAtAddressInternal(u_int64_t address,
277 T* value) const;
278
279 // The largest memory region that will be read from a minidump. The
280 // default is 1MB.
281 static u_int32_t max_bytes_;
282
283 // Base address and size of the memory region, and its position in the
284 // minidump file.
285 MDMemoryDescriptor* descriptor_;
286
287 // Cached memory.
288 mutable vector<u_int8_t>* memory_;
289 };
290
291
292 // MinidumpThread contains information about a thread of execution,
293 // including a snapshot of the thread's stack and CPU context. For
294 // the thread that caused an exception, the context carried by
295 // MinidumpException is probably desired instead of the CPU context
296 // provided here.
297 class MinidumpThread : public MinidumpObject {
298 public:
299 virtual ~MinidumpThread();
300
301 const MDRawThread* thread() const { return valid_ ? &thread_ : NULL; }
302 MinidumpMemoryRegion* GetMemory();
303 MinidumpContext* GetContext();
304
305 // The thread ID is used to determine if a thread is the exception thread,
306 // so a special getter is provided to retrieve this data from the
307 // MDRawThread structure. Returns false if the thread ID cannot be
308 // determined.
309 bool GetThreadID(u_int32_t *thread_id) const;
310
311 // Print a human-readable representation of the object to stdout.
312 void Print();
313
314 private:
315 // These objects are managed by MinidumpThreadList.
316 friend class MinidumpThreadList;
317
318 explicit MinidumpThread(Minidump* minidump);
319
320 // This works like MinidumpStream::Read, but is driven by
321 // MinidumpThreadList. No size checking is done, because
322 // MinidumpThreadList handles that directly.
323 bool Read();
324
325 MDRawThread thread_;
326 MinidumpMemoryRegion* memory_;
327 MinidumpContext* context_;
328 };
329
330
331 // MinidumpThreadList contains all of the threads (as MinidumpThreads) in
332 // a process.
333 class MinidumpThreadList : public MinidumpStream {
334 public:
335 virtual ~MinidumpThreadList();
336
337 static void set_max_threads(u_int32_t max_threads) {
338 max_threads_ = max_threads;
339 }
340 static u_int32_t max_threads() { return max_threads_; }
341
342 unsigned int thread_count() const {
343 return valid_ ? thread_count_ : 0;
344 }
345
346 // Sequential access to threads.
347 MinidumpThread* GetThreadAtIndex(unsigned int index) const;
348
349 // Random access to threads.
350 MinidumpThread* GetThreadByID(u_int32_t thread_id);
351
352 // Print a human-readable representation of the object to stdout.
353 void Print();
354
355 private:
356 friend class Minidump;
357
358 typedef map<u_int32_t, MinidumpThread*> IDToThreadMap;
359 typedef vector<MinidumpThread> MinidumpThreads;
360
361 static const u_int32_t kStreamType = MD_THREAD_LIST_STREAM;
362
363 explicit MinidumpThreadList(Minidump* aMinidump);
364
365 bool Read(u_int32_t aExpectedSize);
366
367 // The largest number of threads that will be read from a minidump. The
368 // default is 256.
369 static u_int32_t max_threads_;
370
371 // Access to threads using the thread ID as the key.
372 IDToThreadMap id_to_thread_map_;
373
374 // The list of threads.
375 MinidumpThreads* threads_;
376 u_int32_t thread_count_;
377 };
378
379
380 // MinidumpModule wraps MDRawModule, which contains information about loaded
381 // code modules. Access is provided to various data referenced indirectly
382 // by MDRawModule, such as the module's name and a specification for where
383 // to locate debugging information for the module.
384 class MinidumpModule : public MinidumpObject,
385 public CodeModule {
386 public:
387 virtual ~MinidumpModule();
388
389 static void set_max_cv_bytes(u_int32_t max_cv_bytes) {
390 max_cv_bytes_ = max_cv_bytes;
391 }
392 static u_int32_t max_cv_bytes() { return max_cv_bytes_; }
393
394 static void set_max_misc_bytes(u_int32_t max_misc_bytes) {
395 max_misc_bytes_ = max_misc_bytes;
396 }
397 static u_int32_t max_misc_bytes() { return max_misc_bytes_; }
398
399 const MDRawModule* module() const { return valid_ ? &module_ : NULL; }
400
401 // CodeModule implementation
402 virtual u_int64_t base_address() const {
403 return valid_ ? module_.base_of_image : static_cast<u_int64_t>(-1);
404 }
405 virtual u_int64_t size() const { return valid_ ? module_.size_of_image : 0; }
406 virtual string code_file() const;
407 virtual string code_identifier() const;
408 virtual string debug_file() const;
409 virtual string debug_identifier() const;
410 virtual string version() const;
411 virtual const CodeModule* Copy() const;
412
413 // The CodeView record, which contains information to locate the module's
414 // debugging information (pdb). This is returned as u_int8_t* because
415 // the data can be of types MDCVInfoPDB20* or MDCVInfoPDB70*, or it may be
416 // of a type unknown to Breakpad, in which case the raw data will still be
417 // returned but no byte-swapping will have been performed. Check the
418 // record's signature in the first four bytes to differentiate between
419 // the various types. Current toolchains generate modules which carry
420 // MDCVInfoPDB70 by default. Returns a pointer to the CodeView record on
421 // success, and NULL on failure. On success, the optional |size| argument
422 // is set to the size of the CodeView record.
423 const u_int8_t* GetCVRecord(u_int32_t* size);
424
425 // The miscellaneous debug record, which is obsolete. Current toolchains
426 // do not generate this type of debugging information (dbg), and this
427 // field is not expected to be present. Returns a pointer to the debugging
428 // record on success, and NULL on failure. On success, the optional |size|
429 // argument is set to the size of the debugging record.
430 const MDImageDebugMisc* GetMiscRecord(u_int32_t* size);
431
432 // Print a human-readable representation of the object to stdout.
433 void Print();
434
435 private:
436 // These objects are managed by MinidumpModuleList.
437 friend class MinidumpModuleList;
438
439 explicit MinidumpModule(Minidump* minidump);
440
441 // This works like MinidumpStream::Read, but is driven by
442 // MinidumpModuleList. No size checking is done, because
443 // MinidumpModuleList handles that directly.
444 bool Read();
445
446 // Reads indirectly-referenced data, including the module name, CodeView
447 // record, and miscellaneous debugging record. This is necessary to allow
448 // MinidumpModuleList to fully construct MinidumpModule objects without
449 // requiring seeks to read a contiguous set of MinidumpModule objects.
450 // All auxiliary data should be available when Read is called, in order to
451 // allow the CodeModule getters to be const methods.
452 bool ReadAuxiliaryData();
453
454 // The largest number of bytes that will be read from a minidump for a
455 // CodeView record or miscellaneous debugging record, respectively. The
456 // default for each is 1024.
457 static u_int32_t max_cv_bytes_;
458 static u_int32_t max_misc_bytes_;
459
460 // True after a successful Read. This is different from valid_, which is
461 // not set true until ReadAuxiliaryData also completes successfully.
462 // module_valid_ is only used by ReadAuxiliaryData and the functions it
463 // calls to determine whether the object is ready for auxiliary data to
464 // be read.
465 bool module_valid_;
466
467 // True if debug info was read from the module. Certain modules
468 // may contain debug records in formats we don't support,
469 // so we can just set this to false to ignore them.
470 bool has_debug_info_;
471
472 MDRawModule module_;
473
474 // Cached module name.
475 const string* name_;
476
477 // Cached CodeView record - this is MDCVInfoPDB20 or (likely)
478 // MDCVInfoPDB70, or possibly something else entirely. Stored as a u_int8_t
479 // because the structure contains a variable-sized string and its exact
480 // size cannot be known until it is processed.
481 vector<u_int8_t>* cv_record_;
482
483 // If cv_record_ is present, cv_record_signature_ contains a copy of the
484 // CodeView record's first four bytes, for ease of determinining the
485 // type of structure that cv_record_ contains.
486 u_int32_t cv_record_signature_;
487
488 // Cached MDImageDebugMisc (usually not present), stored as u_int8_t
489 // because the structure contains a variable-sized string and its exact
490 // size cannot be known until it is processed.
491 vector<u_int8_t>* misc_record_;
492 };
493
494
495 // MinidumpModuleList contains all of the loaded code modules for a process
496 // in the form of MinidumpModules. It maintains a map of these modules
497 // so that it may easily provide a code module corresponding to a specific
498 // address.
499 class MinidumpModuleList : public MinidumpStream,
500 public CodeModules {
501 public:
502 virtual ~MinidumpModuleList();
503
504 static void set_max_modules(u_int32_t max_modules) {
505 max_modules_ = max_modules;
506 }
507 static u_int32_t max_modules() { return max_modules_; }
508
509 // CodeModules implementation.
510 virtual unsigned int module_count() const {
511 return valid_ ? module_count_ : 0;
512 }
513 virtual const MinidumpModule* GetModuleForAddress(u_int64_t address) const;
514 virtual const MinidumpModule* GetMainModule() const;
515 virtual const MinidumpModule* GetModuleAtSequence(
516 unsigned int sequence) const;
517 virtual const MinidumpModule* GetModuleAtIndex(unsigned int index) const;
518 virtual const CodeModules* Copy() const;
519
520 // Print a human-readable representation of the object to stdout.
521 void Print();
522
523 private:
524 friend class Minidump;
525
526 typedef vector<MinidumpModule> MinidumpModules;
527
528 static const u_int32_t kStreamType = MD_MODULE_LIST_STREAM;
529
530 explicit MinidumpModuleList(Minidump* minidump);
531
532 bool Read(u_int32_t expected_size);
533
534 // The largest number of modules that will be read from a minidump. The
535 // default is 1024.
536 static u_int32_t max_modules_;
537
538 // Access to modules using addresses as the key.
539 RangeMap<u_int64_t, unsigned int> *range_map_;
540
541 MinidumpModules *modules_;
542 u_int32_t module_count_;
543 };
544
545
546 // MinidumpMemoryList corresponds to a minidump's MEMORY_LIST_STREAM stream,
547 // which references the snapshots of all of the memory regions contained
548 // within the minidump. For a normal minidump, this includes stack memory
549 // (also referenced by each MinidumpThread, in fact, the MDMemoryDescriptors
550 // here and in MDRawThread both point to exactly the same data in a
551 // minidump file, conserving space), as well as a 256-byte snapshot of memory
552 // surrounding the instruction pointer in the case of an exception. Other
553 // types of minidumps may contain significantly more memory regions. Full-
554 // memory minidumps contain all of a process' mapped memory.
555 class MinidumpMemoryList : public MinidumpStream {
556 public:
557 virtual ~MinidumpMemoryList();
558
559 static void set_max_regions(u_int32_t max_regions) {
560 max_regions_ = max_regions;
561 }
562 static u_int32_t max_regions() { return max_regions_; }
563
564 unsigned int region_count() const { return valid_ ? region_count_ : 0; }
565
566 // Sequential access to memory regions.
567 MinidumpMemoryRegion* GetMemoryRegionAtIndex(unsigned int index);
568
569 // Random access to memory regions. Returns the region encompassing
570 // the address identified by address.
571 MinidumpMemoryRegion* GetMemoryRegionForAddress(u_int64_t address);
572
573 // Print a human-readable representation of the object to stdout.
574 void Print();
575
576 private:
577 friend class Minidump;
578
579 typedef vector<MDMemoryDescriptor> MemoryDescriptors;
580 typedef vector<MinidumpMemoryRegion> MemoryRegions;
581
582 static const u_int32_t kStreamType = MD_MEMORY_LIST_STREAM;
583
584 explicit MinidumpMemoryList(Minidump* minidump);
585
586 bool Read(u_int32_t expected_size);
587
588 // The largest number of memory regions that will be read from a minidump.
589 // The default is 256.
590 static u_int32_t max_regions_;
591
592 // Access to memory regions using addresses as the key.
593 RangeMap<u_int64_t, unsigned int> *range_map_;
594
595 // The list of descriptors. This is maintained separately from the list
596 // of regions, because MemoryRegion doesn't own its MemoryDescriptor, it
597 // maintains a pointer to it. descriptors_ provides the storage for this
598 // purpose.
599 MemoryDescriptors *descriptors_;
600
601 // The list of regions.
602 MemoryRegions *regions_;
603 u_int32_t region_count_;
604 };
605
606
607 // MinidumpException wraps MDRawExceptionStream, which contains information
608 // about the exception that caused the minidump to be generated, if the
609 // minidump was generated in an exception handler called as a result of
610 // an exception. It also provides access to a MinidumpContext object,
611 // which contains the CPU context for the exception thread at the time
612 // the exception occurred.
613 class MinidumpException : public MinidumpStream {
614 public:
615 virtual ~MinidumpException();
616
617 const MDRawExceptionStream* exception() const {
618 return valid_ ? &exception_ : NULL;
619 }
620
621 // The thread ID is used to determine if a thread is the exception thread,
622 // so a special getter is provided to retrieve this data from the
623 // MDRawExceptionStream structure. Returns false if the thread ID cannot
624 // be determined.
625 bool GetThreadID(u_int32_t *thread_id) const;
626
627 MinidumpContext* GetContext();
628
629 // Print a human-readable representation of the object to stdout.
630 void Print();
631
632 private:
633 friend class Minidump;
634
635 static const u_int32_t kStreamType = MD_EXCEPTION_STREAM;
636
637 explicit MinidumpException(Minidump* minidump);
638
639 bool Read(u_int32_t expected_size);
640
641 MDRawExceptionStream exception_;
642 MinidumpContext* context_;
643 };
644
645 // MinidumpAssertion wraps MDRawAssertionInfo, which contains information
646 // about an assertion that caused the minidump to be generated.
647 class MinidumpAssertion : public MinidumpStream {
648 public:
649 virtual ~MinidumpAssertion();
650
651 const MDRawAssertionInfo* assertion() const {
652 return valid_ ? &assertion_ : NULL;
653 }
654
655 string expression() const {
656 return valid_ ? expression_ : "";
657 }
658
659 string function() const {
660 return valid_ ? function_ : "";
661 }
662
663 string file() const {
664 return valid_ ? file_ : "";
665 }
666
667 // Print a human-readable representation of the object to stdout.
668 void Print();
669
670 private:
671 friend class Minidump;
672
673 static const u_int32_t kStreamType = MD_ASSERTION_INFO_STREAM;
674
675 explicit MinidumpAssertion(Minidump* minidump);
676
677 bool Read(u_int32_t expected_size);
678
679 MDRawAssertionInfo assertion_;
680 string expression_;
681 string function_;
682 string file_;
683 };
684
685
686 // MinidumpSystemInfo wraps MDRawSystemInfo and provides information about
687 // the system on which the minidump was generated. See also MinidumpMiscInfo.
688 class MinidumpSystemInfo : public MinidumpStream {
689 public:
690 virtual ~MinidumpSystemInfo();
691
692 const MDRawSystemInfo* system_info() const {
693 return valid_ ? &system_info_ : NULL;
694 }
695
696 // GetOS and GetCPU return textual representations of the operating system
697 // and CPU that produced the minidump. Unlike most other Minidump* methods,
698 // they return string objects, not weak pointers. Defined values for
699 // GetOS() are "mac", "windows", and "linux". Defined values for GetCPU
700 // are "x86" and "ppc". These methods return an empty string when their
701 // values are unknown.
702 string GetOS();
703 string GetCPU();
704
705 // I don't know what CSD stands for, but this field is documented as
706 // returning a textual representation of the OS service pack. On other
707 // platforms, this provides additional information about an OS version
708 // level beyond major.minor.micro. Returns NULL if unknown.
709 const string* GetCSDVersion();
710
711 // If a CPU vendor string can be determined, returns a pointer to it,
712 // otherwise, returns NULL. CPU vendor strings can be determined from
713 // x86 CPUs with CPUID 0.
714 const string* GetCPUVendor();
715
716 // Print a human-readable representation of the object to stdout.
717 void Print();
718
719 private:
720 friend class Minidump;
721
722 static const u_int32_t kStreamType = MD_SYSTEM_INFO_STREAM;
723
724 explicit MinidumpSystemInfo(Minidump* minidump);
725
726 bool Read(u_int32_t expected_size);
727
728 MDRawSystemInfo system_info_;
729
730 // Textual representation of the OS service pack, for minidumps produced
731 // by MiniDumpWriteDump on Windows.
732 const string* csd_version_;
733
734 // A string identifying the CPU vendor, if known.
735 const string* cpu_vendor_;
736 };
737
738
739 // MinidumpMiscInfo wraps MDRawMiscInfo and provides information about
740 // the process that generated the minidump, and optionally additional system
741 // information. See also MinidumpSystemInfo.
742 class MinidumpMiscInfo : public MinidumpStream {
743 public:
744 const MDRawMiscInfo* misc_info() const {
745 return valid_ ? &misc_info_ : NULL;
746 }
747
748 // Print a human-readable representation of the object to stdout.
749 void Print();
750
751 private:
752 friend class Minidump;
753
754 static const u_int32_t kStreamType = MD_MISC_INFO_STREAM;
755
756 explicit MinidumpMiscInfo(Minidump* minidump_);
757
758 bool Read(u_int32_t expected_size_);
759
760 MDRawMiscInfo misc_info_;
761 };
762
763
764 // MinidumpBreakpadInfo wraps MDRawBreakpadInfo, which is an optional stream in
765 // a minidump that provides additional information about the process state
766 // at the time the minidump was generated.
767 class MinidumpBreakpadInfo : public MinidumpStream {
768 public:
769 const MDRawBreakpadInfo* breakpad_info() const {
770 return valid_ ? &breakpad_info_ : NULL;
771 }
772
773 // These thread IDs are used to determine if threads deserve special
774 // treatment, so special getters are provided to retrieve this data from
775 // the MDRawBreakpadInfo structure. The getters return false if the thread
776 // IDs cannot be determined.
777 bool GetDumpThreadID(u_int32_t *thread_id) const;
778 bool GetRequestingThreadID(u_int32_t *thread_id) const;
779
780 // Print a human-readable representation of the object to stdout.
781 void Print();
782
783 private:
784 friend class Minidump;
785
786 static const u_int32_t kStreamType = MD_BREAKPAD_INFO_STREAM;
787
788 explicit MinidumpBreakpadInfo(Minidump* minidump_);
789
790 bool Read(u_int32_t expected_size_);
791
792 MDRawBreakpadInfo breakpad_info_;
793 };
794
795
796 // Minidump is the user's interface to a minidump file. It wraps MDRawHeader
797 // and provides access to the minidump's top-level stream directory.
798 class Minidump {
799 public:
800 // path is the pathname of a file containing the minidump.
801 explicit Minidump(const string& path);
802 // input is an istream wrapping minidump data. Minidump holds a
803 // weak pointer to input, and the caller must ensure that the stream
804 // is valid as long as the Minidump object is.
805 explicit Minidump(std::istream& input);
806
807 virtual ~Minidump();
808
809 // path may be empty if the minidump was not opened from a file
810 virtual string path() const {
811 return path_;
812 }
813 static void set_max_streams(u_int32_t max_streams) {
814 max_streams_ = max_streams;
815 }
816 static u_int32_t max_streams() { return max_streams_; }
817
818 static void set_max_string_length(u_int32_t max_string_length) {
819 max_string_length_ = max_string_length;
820 }
821 static u_int32_t max_string_length() { return max_string_length_; }
822
823 virtual const MDRawHeader* header() const { return valid_ ? &header_ : NULL; }
824
825 // Reads the minidump file's header and top-level stream directory.
826 // The minidump is expected to be positioned at the beginning of the
827 // header. Read() sets up the stream list and map, and validates the
828 // Minidump object.
829 virtual bool Read();
830
831 // The next set of methods are stubs that call GetStream. They exist to
832 // force code generation of the templatized API within the module, and
833 // to avoid exposing an ugly API (GetStream needs to accept a garbage
834 // parameter).
835 virtual MinidumpThreadList* GetThreadList();
836 MinidumpModuleList* GetModuleList();
837 MinidumpMemoryList* GetMemoryList();
838 MinidumpException* GetException();
839 MinidumpAssertion* GetAssertion();
840 MinidumpSystemInfo* GetSystemInfo();
841 MinidumpMiscInfo* GetMiscInfo();
842 MinidumpBreakpadInfo* GetBreakpadInfo();
843
844 // The next set of methods are provided for users who wish to access
845 // data in minidump files directly, while leveraging the rest of
846 // this class and related classes to handle the basic minidump
847 // structure and known stream types.
848
849 unsigned int GetDirectoryEntryCount() const {
850 return valid_ ? header_.stream_count : 0;
851 }
852 const MDRawDirectory* GetDirectoryEntryAtIndex(unsigned int index) const;
853
854 // The next 2 methods are lower-level I/O routines. They use fd_.
855
856 // Reads count bytes from the minidump at the current position into
857 // the storage area pointed to by bytes. bytes must be of sufficient
858 // size. After the read, the file position is advanced by count.
859 bool ReadBytes(void* bytes, size_t count);
860
861 // Sets the position of the minidump file to offset.
862 bool SeekSet(off_t offset);
863
864 // Returns the current position of the minidump file.
865 off_t Tell();
866
867 // The next 2 methods are medium-level I/O routines.
868
869 // ReadString returns a string which is owned by the caller! offset
870 // specifies the offset that a length-encoded string is stored at in the
871 // minidump file.
872 string* ReadString(off_t offset);
873
874 // SeekToStreamType positions the file at the beginning of a stream
875 // identified by stream_type, and informs the caller of the stream's
876 // length by setting *stream_length. Because stream_map maps each stream
877 // type to only one stream in the file, this might mislead the user into
878 // thinking that the stream that this seeks to is the only stream with
879 // type stream_type. That can't happen for streams that these classes
880 // deal with directly, because they're only supposed to be present in the
881 // file singly, and that's verified when stream_map_ is built. Users who
882 // are looking for other stream types should be aware of this
883 // possibility, and consider using GetDirectoryEntryAtIndex (possibly
884 // with GetDirectoryEntryCount) if expecting multiple streams of the same
885 // type in a single minidump file.
886 bool SeekToStreamType(u_int32_t stream_type, u_int32_t* stream_length);
887
888 bool swap() const { return valid_ ? swap_ : false; }
889
890 // Print a human-readable representation of the object to stdout.
891 void Print();
892
893 private:
894 // MinidumpStreamInfo is used in the MinidumpStreamMap. It lets
895 // the Minidump object locate interesting streams quickly, and
896 // provides a convenient place to stash MinidumpStream objects.
897 struct MinidumpStreamInfo {
898 MinidumpStreamInfo() : stream_index(0), stream(NULL) {}
899 ~MinidumpStreamInfo() { delete stream; }
900
901 // Index into the MinidumpDirectoryEntries vector
902 unsigned int stream_index;
903
904 // Pointer to the stream if cached, or NULL if not yet populated
905 MinidumpStream* stream;
906 };
907
908 typedef vector<MDRawDirectory> MinidumpDirectoryEntries;
909 typedef map<u_int32_t, MinidumpStreamInfo> MinidumpStreamMap;
910
911 template<typename T> T* GetStream(T** stream);
912
913 // Opens the minidump file, or if already open, seeks to the beginning.
914 bool Open();
915
916 // The largest number of top-level streams that will be read from a minidump.
917 // Note that streams are only read (and only consume memory) as needed,
918 // when directed by the caller. The default is 128.
919 static u_int32_t max_streams_;
920
921 // The maximum length of a UTF-16 string that will be read from a minidump
922 // in 16-bit words. The default is 1024. UTF-16 strings are converted
923 // to UTF-8 when stored in memory, and each UTF-16 word will be represented
924 // by as many as 3 bytes in UTF-8.
925 static unsigned int max_string_length_;
926
927 MDRawHeader header_;
928
929 // The list of streams.
930 MinidumpDirectoryEntries* directory_;
931
932 // Access to streams using the stream type as the key.
933 MinidumpStreamMap* stream_map_;
934
935 // The pathname of the minidump file to process, set in the constructor.
936 // This may be empty if the minidump was opened directly from a stream.
937 const string path_;
938
939 // The stream for all file I/O. Used by ReadBytes and SeekSet.
940 // Set based on the path in Open, or directly in the constructor.
941 std::istream* stream_;
942
943 // swap_ is true if the minidump file should be byte-swapped. If the
944 // minidump was produced by a CPU that is other-endian than the CPU
945 // processing the minidump, this will be true. If the two CPUs are
946 // same-endian, this will be false.
947 bool swap_;
948
949 // Validity of the Minidump structure, false immediately after
950 // construction or after a failed Read(); true following a successful
951 // Read().
952 bool valid_;
953 };
954
955
956 } // namespace google_breakpad
957
958
959 #endif // GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698