| Index: webkit/compositor/WebTransformationMatrixTest.cpp
|
| diff --git a/webkit/compositor/WebTransformationMatrixTest.cpp b/webkit/compositor/WebTransformationMatrixTest.cpp
|
| deleted file mode 100644
|
| index f0b09fcf922c9ca795cdcfffa52d64e174566b3d..0000000000000000000000000000000000000000
|
| --- a/webkit/compositor/WebTransformationMatrixTest.cpp
|
| +++ /dev/null
|
| @@ -1,1305 +0,0 @@
|
| -// Copyright 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "config.h"
|
| -
|
| -#include <public/WebTransformationMatrix.h>
|
| -
|
| -#include "CCGeometryTestUtils.h"
|
| -#include <gtest/gtest.h>
|
| -#include <wtf/MathExtras.h>
|
| -
|
| -#define EXPECT_ROW1_EQ(a, b, c, d, matrix) \
|
| - EXPECT_FLOAT_EQ((a), (matrix).m11()); \
|
| - EXPECT_FLOAT_EQ((b), (matrix).m21()); \
|
| - EXPECT_FLOAT_EQ((c), (matrix).m31()); \
|
| - EXPECT_FLOAT_EQ((d), (matrix).m41());
|
| -
|
| -#define EXPECT_ROW2_EQ(a, b, c, d, matrix) \
|
| - EXPECT_FLOAT_EQ((a), (matrix).m12()); \
|
| - EXPECT_FLOAT_EQ((b), (matrix).m22()); \
|
| - EXPECT_FLOAT_EQ((c), (matrix).m32()); \
|
| - EXPECT_FLOAT_EQ((d), (matrix).m42());
|
| -
|
| -#define EXPECT_ROW3_EQ(a, b, c, d, matrix) \
|
| - EXPECT_FLOAT_EQ((a), (matrix).m13()); \
|
| - EXPECT_FLOAT_EQ((b), (matrix).m23()); \
|
| - EXPECT_FLOAT_EQ((c), (matrix).m33()); \
|
| - EXPECT_FLOAT_EQ((d), (matrix).m43());
|
| -
|
| -#define EXPECT_ROW4_EQ(a, b, c, d, matrix) \
|
| - EXPECT_FLOAT_EQ((a), (matrix).m14()); \
|
| - EXPECT_FLOAT_EQ((b), (matrix).m24()); \
|
| - EXPECT_FLOAT_EQ((c), (matrix).m34()); \
|
| - EXPECT_FLOAT_EQ((d), (matrix).m44()); \
|
| -
|
| -// Checking float values for equality close to zero is not robust using EXPECT_FLOAT_EQ
|
| -// (see gtest documentation). So, to verify rotation matrices, we must use a looser
|
| -// absolute error threshold in some places.
|
| -#define EXPECT_ROW1_NEAR(a, b, c, d, matrix, errorThreshold) \
|
| - EXPECT_NEAR((a), (matrix).m11(), (errorThreshold)); \
|
| - EXPECT_NEAR((b), (matrix).m21(), (errorThreshold)); \
|
| - EXPECT_NEAR((c), (matrix).m31(), (errorThreshold)); \
|
| - EXPECT_NEAR((d), (matrix).m41(), (errorThreshold));
|
| -
|
| -#define EXPECT_ROW2_NEAR(a, b, c, d, matrix, errorThreshold) \
|
| - EXPECT_NEAR((a), (matrix).m12(), (errorThreshold)); \
|
| - EXPECT_NEAR((b), (matrix).m22(), (errorThreshold)); \
|
| - EXPECT_NEAR((c), (matrix).m32(), (errorThreshold)); \
|
| - EXPECT_NEAR((d), (matrix).m42(), (errorThreshold));
|
| -
|
| -#define EXPECT_ROW3_NEAR(a, b, c, d, matrix, errorThreshold) \
|
| - EXPECT_NEAR((a), (matrix).m13(), (errorThreshold)); \
|
| - EXPECT_NEAR((b), (matrix).m23(), (errorThreshold)); \
|
| - EXPECT_NEAR((c), (matrix).m33(), (errorThreshold)); \
|
| - EXPECT_NEAR((d), (matrix).m43(), (errorThreshold));
|
| -
|
| -#define ERROR_THRESHOLD 1e-14
|
| -#define LOOSE_ERROR_THRESHOLD 1e-7
|
| -
|
| -using namespace WebKit;
|
| -
|
| -namespace {
|
| -
|
| -static void initializeTestMatrix(WebTransformationMatrix& transform)
|
| -{
|
| - transform.setM11(10);
|
| - transform.setM12(11);
|
| - transform.setM13(12);
|
| - transform.setM14(13);
|
| - transform.setM21(14);
|
| - transform.setM22(15);
|
| - transform.setM23(16);
|
| - transform.setM24(17);
|
| - transform.setM31(18);
|
| - transform.setM32(19);
|
| - transform.setM33(20);
|
| - transform.setM34(21);
|
| - transform.setM41(22);
|
| - transform.setM42(23);
|
| - transform.setM43(24);
|
| - transform.setM44(25);
|
| -
|
| - // Sanity check
|
| - EXPECT_ROW1_EQ(10, 14, 18, 22, transform);
|
| - EXPECT_ROW2_EQ(11, 15, 19, 23, transform);
|
| - EXPECT_ROW3_EQ(12, 16, 20, 24, transform);
|
| - EXPECT_ROW4_EQ(13, 17, 21, 25, transform);
|
| -}
|
| -
|
| -static void initializeTestMatrix2(WebTransformationMatrix& transform)
|
| -{
|
| - transform.setM11(30);
|
| - transform.setM12(31);
|
| - transform.setM13(32);
|
| - transform.setM14(33);
|
| - transform.setM21(34);
|
| - transform.setM22(35);
|
| - transform.setM23(36);
|
| - transform.setM24(37);
|
| - transform.setM31(38);
|
| - transform.setM32(39);
|
| - transform.setM33(40);
|
| - transform.setM34(41);
|
| - transform.setM41(42);
|
| - transform.setM42(43);
|
| - transform.setM43(44);
|
| - transform.setM44(45);
|
| -
|
| - // Sanity check
|
| - EXPECT_ROW1_EQ(30, 34, 38, 42, transform);
|
| - EXPECT_ROW2_EQ(31, 35, 39, 43, transform);
|
| - EXPECT_ROW3_EQ(32, 36, 40, 44, transform);
|
| - EXPECT_ROW4_EQ(33, 37, 41, 45, transform);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyDefaultConstructorCreatesIdentityMatrix)
|
| -{
|
| - WebTransformationMatrix A;
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| - EXPECT_TRUE(A.isIdentity());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyConstructorFor2dElements)
|
| -{
|
| - WebTransformationMatrix A(1, 2, 3, 4, 5, 6);
|
| - EXPECT_ROW1_EQ(1, 3, 0, 5, A);
|
| - EXPECT_ROW2_EQ(2, 4, 0, 6, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyConstructorForAllElements)
|
| -{
|
| - WebTransformationMatrix A(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
|
| - EXPECT_ROW1_EQ(1, 5, 9, 13, A);
|
| - EXPECT_ROW2_EQ(2, 6, 10, 14, A);
|
| - EXPECT_ROW3_EQ(3, 7, 11, 15, A);
|
| - EXPECT_ROW4_EQ(4, 8, 12, 16, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyCopyConstructor)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| -
|
| - // Copy constructor should produce exact same elements as matrix A.
|
| - WebTransformationMatrix B(A);
|
| - EXPECT_ROW1_EQ(10, 14, 18, 22, B);
|
| - EXPECT_ROW2_EQ(11, 15, 19, 23, B);
|
| - EXPECT_ROW3_EQ(12, 16, 20, 24, B);
|
| - EXPECT_ROW4_EQ(13, 17, 21, 25, B);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyMatrixInversion)
|
| -{
|
| - // Invert a translation
|
| - WebTransformationMatrix translation;
|
| - translation.translate3d(2, 3, 4);
|
| - EXPECT_TRUE(translation.isInvertible());
|
| -
|
| - WebTransformationMatrix inverseTranslation = translation.inverse();
|
| - EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation);
|
| - EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation);
|
| - EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation);
|
| -
|
| - // Note that inversion should not have changed the original matrix.
|
| - EXPECT_ROW1_EQ(1, 0, 0, 2, translation);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 3, translation);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 4, translation);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, translation);
|
| -
|
| - // Invert a non-uniform scale
|
| - WebTransformationMatrix scale;
|
| - scale.scale3d(4, 10, 100);
|
| - EXPECT_TRUE(scale.isInvertible());
|
| -
|
| - WebTransformationMatrix inverseScale = scale.inverse();
|
| - EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale);
|
| - EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale);
|
| - EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale);
|
| -
|
| - // Try to invert a matrix that is not invertible.
|
| - // The inverse() function should simply return an identity matrix.
|
| - WebTransformationMatrix notInvertible;
|
| - notInvertible.setM11(0);
|
| - notInvertible.setM22(0);
|
| - notInvertible.setM33(0);
|
| - notInvertible.setM44(0);
|
| - EXPECT_FALSE(notInvertible.isInvertible());
|
| -
|
| - WebTransformationMatrix inverseOfNotInvertible;
|
| - initializeTestMatrix(inverseOfNotInvertible); // initialize this to something non-identity, to make sure that assignment below actually took place.
|
| - inverseOfNotInvertible = notInvertible.inverse();
|
| - EXPECT_TRUE(inverseOfNotInvertible.isIdentity());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyTo2DTransform)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| -
|
| - WebTransformationMatrix B = A.to2dTransform();
|
| -
|
| - EXPECT_ROW1_EQ(10, 14, 0, 22, B);
|
| - EXPECT_ROW2_EQ(11, 15, 0, 23, B);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, B);
|
| - EXPECT_ROW4_EQ(13, 17, 0, 25, B);
|
| -
|
| - // Note that to2DTransform should not have changed the original matrix.
|
| - EXPECT_ROW1_EQ(10, 14, 18, 22, A);
|
| - EXPECT_ROW2_EQ(11, 15, 19, 23, A);
|
| - EXPECT_ROW3_EQ(12, 16, 20, 24, A);
|
| - EXPECT_ROW4_EQ(13, 17, 21, 25, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyAssignmentOperator)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| - WebTransformationMatrix B;
|
| - initializeTestMatrix2(B);
|
| - WebTransformationMatrix C;
|
| - initializeTestMatrix2(C);
|
| - C = B = A;
|
| -
|
| - // Both B and C should now have been re-assigned to the value of A.
|
| - EXPECT_ROW1_EQ(10, 14, 18, 22, B);
|
| - EXPECT_ROW2_EQ(11, 15, 19, 23, B);
|
| - EXPECT_ROW3_EQ(12, 16, 20, 24, B);
|
| - EXPECT_ROW4_EQ(13, 17, 21, 25, B);
|
| -
|
| - EXPECT_ROW1_EQ(10, 14, 18, 22, C);
|
| - EXPECT_ROW2_EQ(11, 15, 19, 23, C);
|
| - EXPECT_ROW3_EQ(12, 16, 20, 24, C);
|
| - EXPECT_ROW4_EQ(13, 17, 21, 25, C);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyEqualsBooleanOperator)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| -
|
| - WebTransformationMatrix B;
|
| - initializeTestMatrix(B);
|
| - EXPECT_TRUE(A == B);
|
| -
|
| - // Modifying multiple elements should cause equals operator to return false.
|
| - WebTransformationMatrix C;
|
| - initializeTestMatrix2(C);
|
| - EXPECT_FALSE(A == C);
|
| -
|
| - // Modifying any one individual element should cause equals operator to return false.
|
| - WebTransformationMatrix D;
|
| - D = A;
|
| - D.setM11(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM12(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM13(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM14(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM21(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM22(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM23(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM24(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM31(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM32(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM33(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM34(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM41(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM42(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM43(0);
|
| - EXPECT_FALSE(A == D);
|
| -
|
| - D = A;
|
| - D.setM44(0);
|
| - EXPECT_FALSE(A == D);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyMultiplyOperator)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| -
|
| - WebTransformationMatrix B;
|
| - initializeTestMatrix2(B);
|
| -
|
| - WebTransformationMatrix C = A * B;
|
| - EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C);
|
| - EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C);
|
| - EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C);
|
| - EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C);
|
| -
|
| - // Just an additional sanity check; matrix multiplication is not commutative.
|
| - EXPECT_FALSE(A * B == B * A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyMatrixMultiplication)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| -
|
| - WebTransformationMatrix B;
|
| - initializeTestMatrix2(B);
|
| -
|
| - A.multiply(B);
|
| - EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A);
|
| - EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A);
|
| - EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A);
|
| - EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyMakeIdentiy)
|
| -{
|
| - WebTransformationMatrix A;
|
| - initializeTestMatrix(A);
|
| - A.makeIdentity();
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| - EXPECT_TRUE(A.isIdentity());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyTranslate)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.translate(2, 3);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that translate() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale(5);
|
| - A.translate(2, 3);
|
| - EXPECT_ROW1_EQ(5, 0, 0, 10, A);
|
| - EXPECT_ROW2_EQ(0, 5, 0, 15, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyTranslate3d)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.translate3d(2, 3, 4);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that translate3d() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.translate3d(2, 3, 4);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 12, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 21, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 32, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyTranslateRight3d)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.translateRight3d(2, 3, 4);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Note carefully, all other operations do post-multiply, this one is unique.
|
| - // Verify that translateRight3d() PRE-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.translateRight3d(2, 3, 4);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyScale)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.scale(5);
|
| - EXPECT_ROW1_EQ(5, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 5, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that scale() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.translate3d(2, 3, 4);
|
| - A.scale(5);
|
| - EXPECT_ROW1_EQ(5, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 5, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyNonUniformScale)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.scaleNonUniform(6, 7);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that scaleNonUniform() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.translate3d(2, 3, 4);
|
| - A.scaleNonUniform(6, 7);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyScale3d)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.scale3d(6, 7, 8);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that scale3d() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.translate3d(2, 3, 4);
|
| - A.scale3d(6, 7, 8);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 2, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotate)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.rotate(90);
|
| - EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that rotate() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.rotate(90);
|
| - EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotate3d)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - // Check rotation about z-axis
|
| - A.makeIdentity();
|
| - A.rotate3d(0, 0, 90);
|
| - EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Check rotation about x-axis
|
| - A.makeIdentity();
|
| - A.rotate3d(90, 0, 0);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Check rotation about y-axis.
|
| - // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis.
|
| - A.makeIdentity();
|
| - A.rotate3d(0, 90, 0);
|
| - EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.rotate3d(0, 0, 90);
|
| - EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotate3dOrderOfCompositeRotations)
|
| -{
|
| - // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform consiting of
|
| - // three primitive rotations. This test verifies that the ordering of those three
|
| - // transforms is the intended ordering.
|
| - //
|
| - // The correct ordering for this test case should be:
|
| - // 1. rotate by 30 degrees about z-axis
|
| - // 2. rotate by 20 degrees about y-axis
|
| - // 3. rotate by 10 degrees about x-axis
|
| - //
|
| - // Note: there are 6 possible orderings of 3 transforms. For the specific transforms
|
| - // used in this test, all 6 combinations produce a unique matrix that is different
|
| - // from the other orderings. That way, this test verifies the exact ordering.
|
| -
|
| - WebTransformationMatrix A;
|
| - A.makeIdentity();
|
| - A.rotate3d(10, 20, 30);
|
| -
|
| - EXPECT_ROW1_NEAR(0.8137976813493738026394908,
|
| - -0.4409696105298823720630708,
|
| - 0.3785223063697923939763257,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0.4698463103929541584413698,
|
| - 0.8825641192593856043657752,
|
| - 0.0180283112362972230968694,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(-0.3420201433256686573969318,
|
| - 0.1631759111665348205288950,
|
| - 0.9254165783983233639631294,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3d)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - // Check rotation about z-axis
|
| - A.makeIdentity();
|
| - A.rotate3d(0, 0, 1, 90);
|
| - EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Check rotation about x-axis
|
| - A.makeIdentity();
|
| - A.rotate3d(1, 0, 0, 90);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Check rotation about y-axis.
|
| - // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis.
|
| - A.makeIdentity();
|
| - A.rotate3d(0, 1, 0, 90);
|
| - EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that rotate3d(axis, angle) post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.rotate3d(0, 0, 1, 90);
|
| - EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForArbitraryAxis)
|
| -{
|
| - // Check rotation about an arbitrary non-axis-aligned vector.
|
| - WebTransformationMatrix A;
|
| - A.rotate3d(1, 1, 1, 90);
|
| - EXPECT_ROW1_NEAR(0.3333333333333334258519187,
|
| - -0.2440169358562924717404030,
|
| - 0.9106836025229592124219380,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0.9106836025229592124219380,
|
| - 0.3333333333333334258519187,
|
| - -0.2440169358562924717404030,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(-0.2440169358562924717404030,
|
| - 0.9106836025229592124219380,
|
| - 0.3333333333333334258519187,
|
| - 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForDegenerateAxis)
|
| -{
|
| - // Check rotation about a degenerate zero vector.
|
| - // It is expected to default to rotation about the z-axis.
|
| - WebTransformationMatrix A;
|
| - A.rotate3d(0, 0, 0, 90);
|
| - EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifySkewX)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.skewX(45);
|
| - EXPECT_ROW1_EQ(1, 1, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that skewX() post-multiplies the existing matrix.
|
| - // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-multiplied instead of post-multiplied.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.skewX(45);
|
| - EXPECT_ROW1_EQ(6, 6, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 7, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifySkewY)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.skewY(45);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(1, 1, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -
|
| - // Verify that skewY() post-multiplies the existing matrix.
|
| - // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-multiplied instead of post-multiplied.
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - A.skewY(45);
|
| - EXPECT_ROW1_EQ(6, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(7, 7, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 8, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyApplyPerspective)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.applyPerspective(1);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 0, A);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, A);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, A);
|
| - EXPECT_ROW4_EQ(0, 0, -1, 1, A);
|
| -
|
| - // Verify that applyPerspective() post-multiplies the existing matrix.
|
| - A.makeIdentity();
|
| - A.translate3d(2, 3, 4);
|
| - A.applyPerspective(1);
|
| - EXPECT_ROW1_EQ(1, 0, -2, 2, A);
|
| - EXPECT_ROW2_EQ(0, 1, -3, 3, A);
|
| - EXPECT_ROW3_EQ(0, 0, -3, 4, A);
|
| - EXPECT_ROW4_EQ(0, 0, -1, 1, A);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyHasPerspective)
|
| -{
|
| - WebTransformationMatrix A;
|
| - A.applyPerspective(1);
|
| - EXPECT_TRUE(A.hasPerspective());
|
| -
|
| - A.makeIdentity();
|
| - A.applyPerspective(0);
|
| - EXPECT_FALSE(A.hasPerspective());
|
| -
|
| - A.makeIdentity();
|
| - A.setM34(-0.3);
|
| - EXPECT_TRUE(A.hasPerspective());
|
| -
|
| - // FIXME: WebCore only checkes m34() for perspective, but that is probably
|
| - // wrong. https://bugs.webkit.org/show_bug.cgi?id=83088. For now, this test
|
| - // case expects the exact behavior as implemented by WebCore, but this should
|
| - // probably be changed so that if the entire bottom row is not exactly
|
| - // (0, 0, 0, 1), then hasPerspective should return true.
|
| -
|
| - A.makeIdentity();
|
| - A.setM14(-1);
|
| - EXPECT_FALSE(A.hasPerspective());
|
| -
|
| - A.makeIdentity();
|
| - A.setM24(-1);
|
| - EXPECT_FALSE(A.hasPerspective());
|
| -
|
| - A.makeIdentity();
|
| - A.setM44(0.5);
|
| - EXPECT_FALSE(A.hasPerspective());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyIsInvertible)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - // Translations, rotations, scales, skews and arbitrary combinations of them are invertible.
|
| - A.makeIdentity();
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - A.makeIdentity();
|
| - A.translate3d(2, 3, 4);
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - A.makeIdentity();
|
| - A.scale3d(6, 7, 8);
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - A.makeIdentity();
|
| - A.rotate3d(10, 20, 30);
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - A.makeIdentity();
|
| - A.skewX(45);
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - // A perspective matrix (projection plane at z=0) is invertible. The intuitive
|
| - // explanation is that perspective is eqivalent to a skew of the w-axis; skews are
|
| - // invertible.
|
| - A.makeIdentity();
|
| - A.applyPerspective(1);
|
| - EXPECT_TRUE(A.isInvertible());
|
| -
|
| - // A "pure" perspective matrix derived by similar triangles, with m44() set to zero
|
| - // (i.e. camera positioned at the origin), is not invertible.
|
| - A.makeIdentity();
|
| - A.applyPerspective(1);
|
| - A.setM44(0);
|
| - EXPECT_FALSE(A.isInvertible());
|
| -
|
| - // Adding more to a non-invertible matrix will not make it invertible in the general case.
|
| - A.makeIdentity();
|
| - A.applyPerspective(1);
|
| - A.setM44(0);
|
| - A.scale3d(6, 7, 8);
|
| - A.rotate3d(10, 20, 30);
|
| - A.translate3d(6, 7, 8);
|
| - EXPECT_FALSE(A.isInvertible());
|
| -
|
| - // A degenerate matrix of all zeros is not invertible.
|
| - A.makeIdentity();
|
| - A.setM11(0);
|
| - A.setM22(0);
|
| - A.setM33(0);
|
| - A.setM44(0);
|
| - EXPECT_FALSE(A.isInvertible());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyIsIdentity)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - initializeTestMatrix(A);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - EXPECT_TRUE(A.isIdentity());
|
| -
|
| - // Modifying any one individual element should cause the matrix to no longer be identity.
|
| - A.makeIdentity();
|
| - A.setM11(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM12(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM13(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM14(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM21(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM22(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM23(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM24(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM31(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM32(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM33(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM34(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM41(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM42(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM43(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -
|
| - A.makeIdentity();
|
| - A.setM44(2);
|
| - EXPECT_FALSE(A.isIdentity());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyIsIdentityOrTranslation)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - initializeTestMatrix(A);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - EXPECT_TRUE(A.isIdentityOrTranslation());
|
| -
|
| - // Modifying any non-translation components should cause isIdentityOrTranslation() to
|
| - // return false. NOTE: m41(), m42(), and m43() are the translation components, so
|
| - // modifying them should still return true for isIdentityOrTranslation().
|
| - A.makeIdentity();
|
| - A.setM11(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM12(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM13(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM14(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM21(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM22(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM23(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM24(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM31(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM32(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM33(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM34(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -
|
| - // Note carefully - expecting true here.
|
| - A.makeIdentity();
|
| - A.setM41(2);
|
| - EXPECT_TRUE(A.isIdentityOrTranslation());
|
| -
|
| - // Note carefully - expecting true here.
|
| - A.makeIdentity();
|
| - A.setM42(2);
|
| - EXPECT_TRUE(A.isIdentityOrTranslation());
|
| -
|
| - // Note carefully - expecting true here.
|
| - A.makeIdentity();
|
| - A.setM43(2);
|
| - EXPECT_TRUE(A.isIdentityOrTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.setM44(2);
|
| - EXPECT_FALSE(A.isIdentityOrTranslation());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyIsIntegerTranslation)
|
| -{
|
| - WebTransformationMatrix A;
|
| -
|
| - A.makeIdentity();
|
| - A.translate(2, 3);
|
| - EXPECT_TRUE(A.isIntegerTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.translate(2, 3);
|
| - EXPECT_TRUE(A.isIntegerTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.translate(2.00001, 3);
|
| - EXPECT_FALSE(A.isIntegerTranslation());
|
| -
|
| - A.makeIdentity();
|
| - A.translate(2, 2.99999);
|
| - EXPECT_FALSE(A.isIntegerTranslation());
|
| -
|
| - // Stacking many integer translations should ideally not accumulate any precision error.
|
| - A.makeIdentity();
|
| - for (int i = 0; i < 100000; ++i)
|
| - A.translate(2, 3);
|
| - EXPECT_TRUE(A.isIntegerTranslation());
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForTranslation)
|
| -{
|
| - WebTransformationMatrix from;
|
| - from.translate3d(100, 200, 100);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.translate3d(200, 100, 300);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - to.makeIdentity();
|
| - to.translate3d(200, 100, 300);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 125, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 175, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 150, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.translate3d(200, 100, 300);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 150, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 150, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 200, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.translate3d(200, 100, 300);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_EQ(1, 0, 0, 200, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 100, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 300, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForScale)
|
| -{
|
| - WebTransformationMatrix from;
|
| - from.scale3d(100, 200, 100);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.scale3d(200, 100, 300);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - to.makeIdentity();
|
| - to.scale3d(200, 100, 300);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_EQ(125, 0, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 175, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 150, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.scale3d(200, 100, 300);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_EQ(150, 0, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 150, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 200, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.scale3d(200, 100, 300);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_EQ(200, 0, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 100, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 300, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForSkewX)
|
| -{
|
| - WebTransformationMatrix from;
|
| - from.skewX(0);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.skewX(45);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - to.makeIdentity();
|
| - to.skewX(45);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_EQ(1, 0.5, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.skewX(45);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_EQ(1, 0.25, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.skewX(45);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_EQ(1, 1, 0, 0, to);
|
| - EXPECT_ROW2_EQ(0, 1, 0, 0, to);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForSkewY)
|
| -{
|
| - // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix is
|
| - // inherently underconstrained, and so it does not always compute the originally
|
| - // intended skew parameters. The current implementation uses QR decomposition, which
|
| - // decomposes the shear into a rotation + non-uniform scale.
|
| - //
|
| - // It is unlikely that the decomposition implementation will need to change very
|
| - // often, so to get any test coverage, the compromise is to verify the exact matrix
|
| - // that the blend() operation produces.
|
| - //
|
| - // This problem also potentially exists for skewX, but the current QR decomposition
|
| - // implementation just happens to decompose those test matrices intuitively.
|
| -
|
| - WebTransformationMatrix from;
|
| - from.skewY(0);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.skewY(45);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - to.makeIdentity();
|
| - to.skewY(45);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_NEAR(1.0823489449280947471976333, 0.0464370719145053845178239, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0.2152925909665224513123150, 0.9541702441750861130032035, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.skewY(45);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_NEAR(1.1152212925809066312865525, 0.0676495144007326631996335, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0.4619397844342648662419037, 0.9519009045724774464858342, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - // Unfortunately, this case suffers from uncomfortably large precision error.
|
| - to.makeIdentity();
|
| - to.skewY(45);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_NEAR(1, 0, 0, 0, to, LOOSE_ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 1, 0, 0, to, LOOSE_ERROR_THRESHOLD);
|
| - EXPECT_ROW3_EQ(0, 0, 1, 0, to);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutX)
|
| -{
|
| - // Even though blending uses quaternions, axis-aligned rotations should blend the same
|
| - // with quaternions or Euler angles. So we can test rotation blending by comparing
|
| - // against manually specified matrices from Euler angles.
|
| -
|
| - WebTransformationMatrix from;
|
| - from.rotate3d(1, 0, 0, 0);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(1, 0, 0, 90);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - double expectedRotationAngle = 22.5 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(1, 0, 0, 90);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - expectedRotationAngle = 45 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(1, 0, 0, 90);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(1, 0, 0, 90);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, 0, -1, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutY)
|
| -{
|
| - WebTransformationMatrix from;
|
| - from.rotate3d(0, 1, 0, 0);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 1, 0, 90);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - double expectedRotationAngle = 22.5 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 1, 0, 90);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - expectedRotationAngle = 45 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 1, 0, 90);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 1, 0, 90);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(-1, 0, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutZ)
|
| -{
|
| - WebTransformationMatrix from;
|
| - from.rotate3d(0, 0, 1, 0);
|
| -
|
| - WebTransformationMatrix to;
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 0, 1, 90);
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - double expectedRotationAngle = 22.5 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 0, 1, 90);
|
| - to.blend(from, 0.25);
|
| - EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - expectedRotationAngle = 45 * piDouble / 180.0;
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 0, 1, 90);
|
| - to.blend(from, 0.5);
|
| - EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -
|
| - to.makeIdentity();
|
| - to.rotate3d(0, 0, 1, 90);
|
| - to.blend(from, 1);
|
| - EXPECT_ROW1_NEAR(0, -1, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW2_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
|
| - EXPECT_ROW4_EQ(0, 0, 0, 1, to);
|
| -}
|
| -
|
| -
|
| -TEST(WebTransformationMatrixTest, verifyBlendForCompositeTransform)
|
| -{
|
| - // Verify that the blending was done with a decomposition in correct order by blending
|
| - // a composite transform.
|
| - // Using matrix x vector notation (Ax = b, where x is column vector), the ordering should be:
|
| - // perspective * translation * rotation * skew * scale
|
| - //
|
| - // It is not as important (or meaningful) to check intermediate interpolations; order
|
| - // of operations will be tested well enough by the end cases that are easier to
|
| - // specify.
|
| -
|
| - WebTransformationMatrix from;
|
| - WebTransformationMatrix to;
|
| -
|
| - WebTransformationMatrix expectedEndOfAnimation;
|
| - expectedEndOfAnimation.applyPerspective(1);
|
| - expectedEndOfAnimation.translate3d(10, 20, 30);
|
| - expectedEndOfAnimation.rotate3d(0, 0, 1, 25);
|
| - expectedEndOfAnimation.skewY(45);
|
| - expectedEndOfAnimation.scale3d(6, 7, 8);
|
| -
|
| - to = expectedEndOfAnimation;
|
| - to.blend(from, 0);
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
|
| -
|
| - to = expectedEndOfAnimation;
|
| - to.blend(from, 1);
|
| -
|
| - // Recomposing the matrix results in a normalized matrix, so to verify we need to
|
| - // normalize the expectedEndOfAnimation before comparing elements. Normalizing means
|
| - // dividing everything by expectedEndOfAnimation.m44().
|
| - WebTransformationMatrix normalizedExpectedEndOfAnimation = expectedEndOfAnimation;
|
| - WebTransformationMatrix normalizationMatrix;
|
| - normalizationMatrix.setM11(1 / expectedEndOfAnimation.m44());
|
| - normalizationMatrix.setM22(1 / expectedEndOfAnimation.m44());
|
| - normalizationMatrix.setM33(1 / expectedEndOfAnimation.m44());
|
| - normalizationMatrix.setM44(1 / expectedEndOfAnimation.m44());
|
| - normalizedExpectedEndOfAnimation.multiply(normalizationMatrix);
|
| -
|
| - EXPECT_TRANSFORMATION_MATRIX_EQ(normalizedExpectedEndOfAnimation, to);
|
| -}
|
| -
|
| -} // namespace
|
|
|