Index: webkit/compositor/WebTransformationMatrixTest.cpp |
diff --git a/webkit/compositor/WebTransformationMatrixTest.cpp b/webkit/compositor/WebTransformationMatrixTest.cpp |
deleted file mode 100644 |
index f0b09fcf922c9ca795cdcfffa52d64e174566b3d..0000000000000000000000000000000000000000 |
--- a/webkit/compositor/WebTransformationMatrixTest.cpp |
+++ /dev/null |
@@ -1,1305 +0,0 @@ |
-// Copyright 2012 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "config.h" |
- |
-#include <public/WebTransformationMatrix.h> |
- |
-#include "CCGeometryTestUtils.h" |
-#include <gtest/gtest.h> |
-#include <wtf/MathExtras.h> |
- |
-#define EXPECT_ROW1_EQ(a, b, c, d, matrix) \ |
- EXPECT_FLOAT_EQ((a), (matrix).m11()); \ |
- EXPECT_FLOAT_EQ((b), (matrix).m21()); \ |
- EXPECT_FLOAT_EQ((c), (matrix).m31()); \ |
- EXPECT_FLOAT_EQ((d), (matrix).m41()); |
- |
-#define EXPECT_ROW2_EQ(a, b, c, d, matrix) \ |
- EXPECT_FLOAT_EQ((a), (matrix).m12()); \ |
- EXPECT_FLOAT_EQ((b), (matrix).m22()); \ |
- EXPECT_FLOAT_EQ((c), (matrix).m32()); \ |
- EXPECT_FLOAT_EQ((d), (matrix).m42()); |
- |
-#define EXPECT_ROW3_EQ(a, b, c, d, matrix) \ |
- EXPECT_FLOAT_EQ((a), (matrix).m13()); \ |
- EXPECT_FLOAT_EQ((b), (matrix).m23()); \ |
- EXPECT_FLOAT_EQ((c), (matrix).m33()); \ |
- EXPECT_FLOAT_EQ((d), (matrix).m43()); |
- |
-#define EXPECT_ROW4_EQ(a, b, c, d, matrix) \ |
- EXPECT_FLOAT_EQ((a), (matrix).m14()); \ |
- EXPECT_FLOAT_EQ((b), (matrix).m24()); \ |
- EXPECT_FLOAT_EQ((c), (matrix).m34()); \ |
- EXPECT_FLOAT_EQ((d), (matrix).m44()); \ |
- |
-// Checking float values for equality close to zero is not robust using EXPECT_FLOAT_EQ |
-// (see gtest documentation). So, to verify rotation matrices, we must use a looser |
-// absolute error threshold in some places. |
-#define EXPECT_ROW1_NEAR(a, b, c, d, matrix, errorThreshold) \ |
- EXPECT_NEAR((a), (matrix).m11(), (errorThreshold)); \ |
- EXPECT_NEAR((b), (matrix).m21(), (errorThreshold)); \ |
- EXPECT_NEAR((c), (matrix).m31(), (errorThreshold)); \ |
- EXPECT_NEAR((d), (matrix).m41(), (errorThreshold)); |
- |
-#define EXPECT_ROW2_NEAR(a, b, c, d, matrix, errorThreshold) \ |
- EXPECT_NEAR((a), (matrix).m12(), (errorThreshold)); \ |
- EXPECT_NEAR((b), (matrix).m22(), (errorThreshold)); \ |
- EXPECT_NEAR((c), (matrix).m32(), (errorThreshold)); \ |
- EXPECT_NEAR((d), (matrix).m42(), (errorThreshold)); |
- |
-#define EXPECT_ROW3_NEAR(a, b, c, d, matrix, errorThreshold) \ |
- EXPECT_NEAR((a), (matrix).m13(), (errorThreshold)); \ |
- EXPECT_NEAR((b), (matrix).m23(), (errorThreshold)); \ |
- EXPECT_NEAR((c), (matrix).m33(), (errorThreshold)); \ |
- EXPECT_NEAR((d), (matrix).m43(), (errorThreshold)); |
- |
-#define ERROR_THRESHOLD 1e-14 |
-#define LOOSE_ERROR_THRESHOLD 1e-7 |
- |
-using namespace WebKit; |
- |
-namespace { |
- |
-static void initializeTestMatrix(WebTransformationMatrix& transform) |
-{ |
- transform.setM11(10); |
- transform.setM12(11); |
- transform.setM13(12); |
- transform.setM14(13); |
- transform.setM21(14); |
- transform.setM22(15); |
- transform.setM23(16); |
- transform.setM24(17); |
- transform.setM31(18); |
- transform.setM32(19); |
- transform.setM33(20); |
- transform.setM34(21); |
- transform.setM41(22); |
- transform.setM42(23); |
- transform.setM43(24); |
- transform.setM44(25); |
- |
- // Sanity check |
- EXPECT_ROW1_EQ(10, 14, 18, 22, transform); |
- EXPECT_ROW2_EQ(11, 15, 19, 23, transform); |
- EXPECT_ROW3_EQ(12, 16, 20, 24, transform); |
- EXPECT_ROW4_EQ(13, 17, 21, 25, transform); |
-} |
- |
-static void initializeTestMatrix2(WebTransformationMatrix& transform) |
-{ |
- transform.setM11(30); |
- transform.setM12(31); |
- transform.setM13(32); |
- transform.setM14(33); |
- transform.setM21(34); |
- transform.setM22(35); |
- transform.setM23(36); |
- transform.setM24(37); |
- transform.setM31(38); |
- transform.setM32(39); |
- transform.setM33(40); |
- transform.setM34(41); |
- transform.setM41(42); |
- transform.setM42(43); |
- transform.setM43(44); |
- transform.setM44(45); |
- |
- // Sanity check |
- EXPECT_ROW1_EQ(30, 34, 38, 42, transform); |
- EXPECT_ROW2_EQ(31, 35, 39, 43, transform); |
- EXPECT_ROW3_EQ(32, 36, 40, 44, transform); |
- EXPECT_ROW4_EQ(33, 37, 41, 45, transform); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyDefaultConstructorCreatesIdentityMatrix) |
-{ |
- WebTransformationMatrix A; |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- EXPECT_TRUE(A.isIdentity()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyConstructorFor2dElements) |
-{ |
- WebTransformationMatrix A(1, 2, 3, 4, 5, 6); |
- EXPECT_ROW1_EQ(1, 3, 0, 5, A); |
- EXPECT_ROW2_EQ(2, 4, 0, 6, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyConstructorForAllElements) |
-{ |
- WebTransformationMatrix A(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
- EXPECT_ROW1_EQ(1, 5, 9, 13, A); |
- EXPECT_ROW2_EQ(2, 6, 10, 14, A); |
- EXPECT_ROW3_EQ(3, 7, 11, 15, A); |
- EXPECT_ROW4_EQ(4, 8, 12, 16, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyCopyConstructor) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- |
- // Copy constructor should produce exact same elements as matrix A. |
- WebTransformationMatrix B(A); |
- EXPECT_ROW1_EQ(10, 14, 18, 22, B); |
- EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
- EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
- EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyMatrixInversion) |
-{ |
- // Invert a translation |
- WebTransformationMatrix translation; |
- translation.translate3d(2, 3, 4); |
- EXPECT_TRUE(translation.isInvertible()); |
- |
- WebTransformationMatrix inverseTranslation = translation.inverse(); |
- EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); |
- EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); |
- EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); |
- |
- // Note that inversion should not have changed the original matrix. |
- EXPECT_ROW1_EQ(1, 0, 0, 2, translation); |
- EXPECT_ROW2_EQ(0, 1, 0, 3, translation); |
- EXPECT_ROW3_EQ(0, 0, 1, 4, translation); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, translation); |
- |
- // Invert a non-uniform scale |
- WebTransformationMatrix scale; |
- scale.scale3d(4, 10, 100); |
- EXPECT_TRUE(scale.isInvertible()); |
- |
- WebTransformationMatrix inverseScale = scale.inverse(); |
- EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); |
- EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); |
- EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); |
- |
- // Try to invert a matrix that is not invertible. |
- // The inverse() function should simply return an identity matrix. |
- WebTransformationMatrix notInvertible; |
- notInvertible.setM11(0); |
- notInvertible.setM22(0); |
- notInvertible.setM33(0); |
- notInvertible.setM44(0); |
- EXPECT_FALSE(notInvertible.isInvertible()); |
- |
- WebTransformationMatrix inverseOfNotInvertible; |
- initializeTestMatrix(inverseOfNotInvertible); // initialize this to something non-identity, to make sure that assignment below actually took place. |
- inverseOfNotInvertible = notInvertible.inverse(); |
- EXPECT_TRUE(inverseOfNotInvertible.isIdentity()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyTo2DTransform) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- |
- WebTransformationMatrix B = A.to2dTransform(); |
- |
- EXPECT_ROW1_EQ(10, 14, 0, 22, B); |
- EXPECT_ROW2_EQ(11, 15, 0, 23, B); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, B); |
- EXPECT_ROW4_EQ(13, 17, 0, 25, B); |
- |
- // Note that to2DTransform should not have changed the original matrix. |
- EXPECT_ROW1_EQ(10, 14, 18, 22, A); |
- EXPECT_ROW2_EQ(11, 15, 19, 23, A); |
- EXPECT_ROW3_EQ(12, 16, 20, 24, A); |
- EXPECT_ROW4_EQ(13, 17, 21, 25, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyAssignmentOperator) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- WebTransformationMatrix B; |
- initializeTestMatrix2(B); |
- WebTransformationMatrix C; |
- initializeTestMatrix2(C); |
- C = B = A; |
- |
- // Both B and C should now have been re-assigned to the value of A. |
- EXPECT_ROW1_EQ(10, 14, 18, 22, B); |
- EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
- EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
- EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
- |
- EXPECT_ROW1_EQ(10, 14, 18, 22, C); |
- EXPECT_ROW2_EQ(11, 15, 19, 23, C); |
- EXPECT_ROW3_EQ(12, 16, 20, 24, C); |
- EXPECT_ROW4_EQ(13, 17, 21, 25, C); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyEqualsBooleanOperator) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- |
- WebTransformationMatrix B; |
- initializeTestMatrix(B); |
- EXPECT_TRUE(A == B); |
- |
- // Modifying multiple elements should cause equals operator to return false. |
- WebTransformationMatrix C; |
- initializeTestMatrix2(C); |
- EXPECT_FALSE(A == C); |
- |
- // Modifying any one individual element should cause equals operator to return false. |
- WebTransformationMatrix D; |
- D = A; |
- D.setM11(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM12(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM13(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM14(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM21(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM22(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM23(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM24(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM31(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM32(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM33(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM34(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM41(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM42(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM43(0); |
- EXPECT_FALSE(A == D); |
- |
- D = A; |
- D.setM44(0); |
- EXPECT_FALSE(A == D); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyMultiplyOperator) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- |
- WebTransformationMatrix B; |
- initializeTestMatrix2(B); |
- |
- WebTransformationMatrix C = A * B; |
- EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C); |
- EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C); |
- EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C); |
- EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C); |
- |
- // Just an additional sanity check; matrix multiplication is not commutative. |
- EXPECT_FALSE(A * B == B * A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyMatrixMultiplication) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- |
- WebTransformationMatrix B; |
- initializeTestMatrix2(B); |
- |
- A.multiply(B); |
- EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); |
- EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); |
- EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); |
- EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyMakeIdentiy) |
-{ |
- WebTransformationMatrix A; |
- initializeTestMatrix(A); |
- A.makeIdentity(); |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- EXPECT_TRUE(A.isIdentity()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyTranslate) |
-{ |
- WebTransformationMatrix A; |
- A.translate(2, 3); |
- EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that translate() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale(5); |
- A.translate(2, 3); |
- EXPECT_ROW1_EQ(5, 0, 0, 10, A); |
- EXPECT_ROW2_EQ(0, 5, 0, 15, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyTranslate3d) |
-{ |
- WebTransformationMatrix A; |
- A.translate3d(2, 3, 4); |
- EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that translate3d() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.translate3d(2, 3, 4); |
- EXPECT_ROW1_EQ(6, 0, 0, 12, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 21, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 32, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyTranslateRight3d) |
-{ |
- WebTransformationMatrix A; |
- A.translateRight3d(2, 3, 4); |
- EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Note carefully, all other operations do post-multiply, this one is unique. |
- // Verify that translateRight3d() PRE-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.translateRight3d(2, 3, 4); |
- EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyScale) |
-{ |
- WebTransformationMatrix A; |
- A.scale(5); |
- EXPECT_ROW1_EQ(5, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 5, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that scale() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.translate3d(2, 3, 4); |
- A.scale(5); |
- EXPECT_ROW1_EQ(5, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 5, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyNonUniformScale) |
-{ |
- WebTransformationMatrix A; |
- A.scaleNonUniform(6, 7); |
- EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that scaleNonUniform() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.translate3d(2, 3, 4); |
- A.scaleNonUniform(6, 7); |
- EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyScale3d) |
-{ |
- WebTransformationMatrix A; |
- A.scale3d(6, 7, 8); |
- EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that scale3d() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.translate3d(2, 3, 4); |
- A.scale3d(6, 7, 8); |
- EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 4, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotate) |
-{ |
- WebTransformationMatrix A; |
- A.rotate(90); |
- EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that rotate() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.rotate(90); |
- EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotate3d) |
-{ |
- WebTransformationMatrix A; |
- |
- // Check rotation about z-axis |
- A.makeIdentity(); |
- A.rotate3d(0, 0, 90); |
- EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Check rotation about x-axis |
- A.makeIdentity(); |
- A.rotate3d(90, 0, 0); |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Check rotation about y-axis. |
- // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. |
- A.makeIdentity(); |
- A.rotate3d(0, 90, 0); |
- EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.rotate3d(0, 0, 90); |
- EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotate3dOrderOfCompositeRotations) |
-{ |
- // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform consiting of |
- // three primitive rotations. This test verifies that the ordering of those three |
- // transforms is the intended ordering. |
- // |
- // The correct ordering for this test case should be: |
- // 1. rotate by 30 degrees about z-axis |
- // 2. rotate by 20 degrees about y-axis |
- // 3. rotate by 10 degrees about x-axis |
- // |
- // Note: there are 6 possible orderings of 3 transforms. For the specific transforms |
- // used in this test, all 6 combinations produce a unique matrix that is different |
- // from the other orderings. That way, this test verifies the exact ordering. |
- |
- WebTransformationMatrix A; |
- A.makeIdentity(); |
- A.rotate3d(10, 20, 30); |
- |
- EXPECT_ROW1_NEAR(0.8137976813493738026394908, |
- -0.4409696105298823720630708, |
- 0.3785223063697923939763257, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0.4698463103929541584413698, |
- 0.8825641192593856043657752, |
- 0.0180283112362972230968694, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(-0.3420201433256686573969318, |
- 0.1631759111665348205288950, |
- 0.9254165783983233639631294, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3d) |
-{ |
- WebTransformationMatrix A; |
- |
- // Check rotation about z-axis |
- A.makeIdentity(); |
- A.rotate3d(0, 0, 1, 90); |
- EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Check rotation about x-axis |
- A.makeIdentity(); |
- A.rotate3d(1, 0, 0, 90); |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Check rotation about y-axis. |
- // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. |
- A.makeIdentity(); |
- A.rotate3d(0, 1, 0, 90); |
- EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.rotate3d(0, 0, 1, 90); |
- EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForArbitraryAxis) |
-{ |
- // Check rotation about an arbitrary non-axis-aligned vector. |
- WebTransformationMatrix A; |
- A.rotate3d(1, 1, 1, 90); |
- EXPECT_ROW1_NEAR(0.3333333333333334258519187, |
- -0.2440169358562924717404030, |
- 0.9106836025229592124219380, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0.9106836025229592124219380, |
- 0.3333333333333334258519187, |
- -0.2440169358562924717404030, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(-0.2440169358562924717404030, |
- 0.9106836025229592124219380, |
- 0.3333333333333334258519187, |
- 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForDegenerateAxis) |
-{ |
- // Check rotation about a degenerate zero vector. |
- // It is expected to default to rotation about the z-axis. |
- WebTransformationMatrix A; |
- A.rotate3d(0, 0, 0, 90); |
- EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifySkewX) |
-{ |
- WebTransformationMatrix A; |
- A.skewX(45); |
- EXPECT_ROW1_EQ(1, 1, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that skewX() post-multiplies the existing matrix. |
- // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-multiplied instead of post-multiplied. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.skewX(45); |
- EXPECT_ROW1_EQ(6, 6, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifySkewY) |
-{ |
- WebTransformationMatrix A; |
- A.skewY(45); |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(1, 1, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
- |
- // Verify that skewY() post-multiplies the existing matrix. |
- // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-multiplied instead of post-multiplied. |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- A.skewY(45); |
- EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(7, 7, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyApplyPerspective) |
-{ |
- WebTransformationMatrix A; |
- A.applyPerspective(1); |
- EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
- EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
- |
- // Verify that applyPerspective() post-multiplies the existing matrix. |
- A.makeIdentity(); |
- A.translate3d(2, 3, 4); |
- A.applyPerspective(1); |
- EXPECT_ROW1_EQ(1, 0, -2, 2, A); |
- EXPECT_ROW2_EQ(0, 1, -3, 3, A); |
- EXPECT_ROW3_EQ(0, 0, -3, 4, A); |
- EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyHasPerspective) |
-{ |
- WebTransformationMatrix A; |
- A.applyPerspective(1); |
- EXPECT_TRUE(A.hasPerspective()); |
- |
- A.makeIdentity(); |
- A.applyPerspective(0); |
- EXPECT_FALSE(A.hasPerspective()); |
- |
- A.makeIdentity(); |
- A.setM34(-0.3); |
- EXPECT_TRUE(A.hasPerspective()); |
- |
- // FIXME: WebCore only checkes m34() for perspective, but that is probably |
- // wrong. https://bugs.webkit.org/show_bug.cgi?id=83088. For now, this test |
- // case expects the exact behavior as implemented by WebCore, but this should |
- // probably be changed so that if the entire bottom row is not exactly |
- // (0, 0, 0, 1), then hasPerspective should return true. |
- |
- A.makeIdentity(); |
- A.setM14(-1); |
- EXPECT_FALSE(A.hasPerspective()); |
- |
- A.makeIdentity(); |
- A.setM24(-1); |
- EXPECT_FALSE(A.hasPerspective()); |
- |
- A.makeIdentity(); |
- A.setM44(0.5); |
- EXPECT_FALSE(A.hasPerspective()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyIsInvertible) |
-{ |
- WebTransformationMatrix A; |
- |
- // Translations, rotations, scales, skews and arbitrary combinations of them are invertible. |
- A.makeIdentity(); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- A.makeIdentity(); |
- A.translate3d(2, 3, 4); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- A.makeIdentity(); |
- A.scale3d(6, 7, 8); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- A.makeIdentity(); |
- A.rotate3d(10, 20, 30); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- A.makeIdentity(); |
- A.skewX(45); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- // A perspective matrix (projection plane at z=0) is invertible. The intuitive |
- // explanation is that perspective is eqivalent to a skew of the w-axis; skews are |
- // invertible. |
- A.makeIdentity(); |
- A.applyPerspective(1); |
- EXPECT_TRUE(A.isInvertible()); |
- |
- // A "pure" perspective matrix derived by similar triangles, with m44() set to zero |
- // (i.e. camera positioned at the origin), is not invertible. |
- A.makeIdentity(); |
- A.applyPerspective(1); |
- A.setM44(0); |
- EXPECT_FALSE(A.isInvertible()); |
- |
- // Adding more to a non-invertible matrix will not make it invertible in the general case. |
- A.makeIdentity(); |
- A.applyPerspective(1); |
- A.setM44(0); |
- A.scale3d(6, 7, 8); |
- A.rotate3d(10, 20, 30); |
- A.translate3d(6, 7, 8); |
- EXPECT_FALSE(A.isInvertible()); |
- |
- // A degenerate matrix of all zeros is not invertible. |
- A.makeIdentity(); |
- A.setM11(0); |
- A.setM22(0); |
- A.setM33(0); |
- A.setM44(0); |
- EXPECT_FALSE(A.isInvertible()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyIsIdentity) |
-{ |
- WebTransformationMatrix A; |
- |
- initializeTestMatrix(A); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- EXPECT_TRUE(A.isIdentity()); |
- |
- // Modifying any one individual element should cause the matrix to no longer be identity. |
- A.makeIdentity(); |
- A.setM11(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM12(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM13(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM14(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM21(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM22(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM23(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM24(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM31(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM32(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM33(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM34(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM41(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM42(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM43(2); |
- EXPECT_FALSE(A.isIdentity()); |
- |
- A.makeIdentity(); |
- A.setM44(2); |
- EXPECT_FALSE(A.isIdentity()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyIsIdentityOrTranslation) |
-{ |
- WebTransformationMatrix A; |
- |
- initializeTestMatrix(A); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- EXPECT_TRUE(A.isIdentityOrTranslation()); |
- |
- // Modifying any non-translation components should cause isIdentityOrTranslation() to |
- // return false. NOTE: m41(), m42(), and m43() are the translation components, so |
- // modifying them should still return true for isIdentityOrTranslation(). |
- A.makeIdentity(); |
- A.setM11(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM12(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM13(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM14(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM21(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM22(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM23(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM24(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM31(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM32(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM33(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM34(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
- |
- // Note carefully - expecting true here. |
- A.makeIdentity(); |
- A.setM41(2); |
- EXPECT_TRUE(A.isIdentityOrTranslation()); |
- |
- // Note carefully - expecting true here. |
- A.makeIdentity(); |
- A.setM42(2); |
- EXPECT_TRUE(A.isIdentityOrTranslation()); |
- |
- // Note carefully - expecting true here. |
- A.makeIdentity(); |
- A.setM43(2); |
- EXPECT_TRUE(A.isIdentityOrTranslation()); |
- |
- A.makeIdentity(); |
- A.setM44(2); |
- EXPECT_FALSE(A.isIdentityOrTranslation()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyIsIntegerTranslation) |
-{ |
- WebTransformationMatrix A; |
- |
- A.makeIdentity(); |
- A.translate(2, 3); |
- EXPECT_TRUE(A.isIntegerTranslation()); |
- |
- A.makeIdentity(); |
- A.translate(2, 3); |
- EXPECT_TRUE(A.isIntegerTranslation()); |
- |
- A.makeIdentity(); |
- A.translate(2.00001, 3); |
- EXPECT_FALSE(A.isIntegerTranslation()); |
- |
- A.makeIdentity(); |
- A.translate(2, 2.99999); |
- EXPECT_FALSE(A.isIntegerTranslation()); |
- |
- // Stacking many integer translations should ideally not accumulate any precision error. |
- A.makeIdentity(); |
- for (int i = 0; i < 100000; ++i) |
- A.translate(2, 3); |
- EXPECT_TRUE(A.isIntegerTranslation()); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForTranslation) |
-{ |
- WebTransformationMatrix from; |
- from.translate3d(100, 200, 100); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.translate3d(200, 100, 300); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- to.makeIdentity(); |
- to.translate3d(200, 100, 300); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_EQ(1, 0, 0, 125, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 175, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 150, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.translate3d(200, 100, 300); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_EQ(1, 0, 0, 150, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 150, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 200, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.translate3d(200, 100, 300); |
- to.blend(from, 1); |
- EXPECT_ROW1_EQ(1, 0, 0, 200, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 100, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 300, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForScale) |
-{ |
- WebTransformationMatrix from; |
- from.scale3d(100, 200, 100); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.scale3d(200, 100, 300); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- to.makeIdentity(); |
- to.scale3d(200, 100, 300); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_EQ(125, 0, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 175, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 150, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.scale3d(200, 100, 300); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_EQ(150, 0, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 150, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 200, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.scale3d(200, 100, 300); |
- to.blend(from, 1); |
- EXPECT_ROW1_EQ(200, 0, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 100, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 300, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForSkewX) |
-{ |
- WebTransformationMatrix from; |
- from.skewX(0); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.skewX(45); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- to.makeIdentity(); |
- to.skewX(45); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_EQ(1, 0.5, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.skewX(45); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_EQ(1, 0.25, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.skewX(45); |
- to.blend(from, 1); |
- EXPECT_ROW1_EQ(1, 1, 0, 0, to); |
- EXPECT_ROW2_EQ(0, 1, 0, 0, to); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForSkewY) |
-{ |
- // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix is |
- // inherently underconstrained, and so it does not always compute the originally |
- // intended skew parameters. The current implementation uses QR decomposition, which |
- // decomposes the shear into a rotation + non-uniform scale. |
- // |
- // It is unlikely that the decomposition implementation will need to change very |
- // often, so to get any test coverage, the compromise is to verify the exact matrix |
- // that the blend() operation produces. |
- // |
- // This problem also potentially exists for skewX, but the current QR decomposition |
- // implementation just happens to decompose those test matrices intuitively. |
- |
- WebTransformationMatrix from; |
- from.skewY(0); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.skewY(45); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- to.makeIdentity(); |
- to.skewY(45); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_NEAR(1.0823489449280947471976333, 0.0464370719145053845178239, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0.2152925909665224513123150, 0.9541702441750861130032035, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.skewY(45); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_NEAR(1.1152212925809066312865525, 0.0676495144007326631996335, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0.4619397844342648662419037, 0.9519009045724774464858342, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- // Unfortunately, this case suffers from uncomfortably large precision error. |
- to.makeIdentity(); |
- to.skewY(45); |
- to.blend(from, 1); |
- EXPECT_ROW1_NEAR(1, 0, 0, 0, to, LOOSE_ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 1, 0, 0, to, LOOSE_ERROR_THRESHOLD); |
- EXPECT_ROW3_EQ(0, 0, 1, 0, to); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutX) |
-{ |
- // Even though blending uses quaternions, axis-aligned rotations should blend the same |
- // with quaternions or Euler angles. So we can test rotation blending by comparing |
- // against manually specified matrices from Euler angles. |
- |
- WebTransformationMatrix from; |
- from.rotate3d(1, 0, 0, 0); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.rotate3d(1, 0, 0, 90); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- double expectedRotationAngle = 22.5 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(1, 0, 0, 90); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- expectedRotationAngle = 45 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(1, 0, 0, 90); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.rotate3d(1, 0, 0, 90); |
- to.blend(from, 1); |
- EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, 0, -1, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutY) |
-{ |
- WebTransformationMatrix from; |
- from.rotate3d(0, 1, 0, 0); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.rotate3d(0, 1, 0, 90); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- double expectedRotationAngle = 22.5 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(0, 1, 0, 90); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- expectedRotationAngle = 45 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(0, 1, 0, 90); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.rotate3d(0, 1, 0, 90); |
- to.blend(from, 1); |
- EXPECT_ROW1_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(-1, 0, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutZ) |
-{ |
- WebTransformationMatrix from; |
- from.rotate3d(0, 0, 1, 0); |
- |
- WebTransformationMatrix to; |
- |
- to.makeIdentity(); |
- to.rotate3d(0, 0, 1, 90); |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- double expectedRotationAngle = 22.5 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(0, 0, 1, 90); |
- to.blend(from, 0.25); |
- EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- expectedRotationAngle = 45 * piDouble / 180.0; |
- to.makeIdentity(); |
- to.rotate3d(0, 0, 1, 90); |
- to.blend(from, 0.5); |
- EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
- |
- to.makeIdentity(); |
- to.rotate3d(0, 0, 1, 90); |
- to.blend(from, 1); |
- EXPECT_ROW1_NEAR(0, -1, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW2_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); |
- EXPECT_ROW4_EQ(0, 0, 0, 1, to); |
-} |
- |
- |
-TEST(WebTransformationMatrixTest, verifyBlendForCompositeTransform) |
-{ |
- // Verify that the blending was done with a decomposition in correct order by blending |
- // a composite transform. |
- // Using matrix x vector notation (Ax = b, where x is column vector), the ordering should be: |
- // perspective * translation * rotation * skew * scale |
- // |
- // It is not as important (or meaningful) to check intermediate interpolations; order |
- // of operations will be tested well enough by the end cases that are easier to |
- // specify. |
- |
- WebTransformationMatrix from; |
- WebTransformationMatrix to; |
- |
- WebTransformationMatrix expectedEndOfAnimation; |
- expectedEndOfAnimation.applyPerspective(1); |
- expectedEndOfAnimation.translate3d(10, 20, 30); |
- expectedEndOfAnimation.rotate3d(0, 0, 1, 25); |
- expectedEndOfAnimation.skewY(45); |
- expectedEndOfAnimation.scale3d(6, 7, 8); |
- |
- to = expectedEndOfAnimation; |
- to.blend(from, 0); |
- EXPECT_TRANSFORMATION_MATRIX_EQ(from, to); |
- |
- to = expectedEndOfAnimation; |
- to.blend(from, 1); |
- |
- // Recomposing the matrix results in a normalized matrix, so to verify we need to |
- // normalize the expectedEndOfAnimation before comparing elements. Normalizing means |
- // dividing everything by expectedEndOfAnimation.m44(). |
- WebTransformationMatrix normalizedExpectedEndOfAnimation = expectedEndOfAnimation; |
- WebTransformationMatrix normalizationMatrix; |
- normalizationMatrix.setM11(1 / expectedEndOfAnimation.m44()); |
- normalizationMatrix.setM22(1 / expectedEndOfAnimation.m44()); |
- normalizationMatrix.setM33(1 / expectedEndOfAnimation.m44()); |
- normalizationMatrix.setM44(1 / expectedEndOfAnimation.m44()); |
- normalizedExpectedEndOfAnimation.multiply(normalizationMatrix); |
- |
- EXPECT_TRANSFORMATION_MATRIX_EQ(normalizedExpectedEndOfAnimation, to); |
-} |
- |
-} // namespace |