Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(30)

Unified Diff: webkit/compositor/WebTransformationMatrixTest.cpp

Issue 10909020: Enable webkit_compositor_unittests (Closed) Base URL: http://git.chromium.org/chromium/src.git@master
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « webkit/compositor/WebTransformOperationsTest.cpp ('k') | webkit/compositor/compositor.gyp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: webkit/compositor/WebTransformationMatrixTest.cpp
diff --git a/webkit/compositor/WebTransformationMatrixTest.cpp b/webkit/compositor/WebTransformationMatrixTest.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..82023660d496f53c53a32dad1c8ed40dee7e60cc
--- /dev/null
+++ b/webkit/compositor/WebTransformationMatrixTest.cpp
@@ -0,0 +1,1305 @@
+// Copyright 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "config.h"
+
+#include <public/WebTransformationMatrix.h>
+
+#include "CCLayerTreeTestCommon.h"
+#include <gtest/gtest.h>
+#include <wtf/MathExtras.h>
+
+#define EXPECT_ROW1_EQ(a, b, c, d, matrix) \
+ EXPECT_FLOAT_EQ((a), (matrix).m11()); \
+ EXPECT_FLOAT_EQ((b), (matrix).m21()); \
+ EXPECT_FLOAT_EQ((c), (matrix).m31()); \
+ EXPECT_FLOAT_EQ((d), (matrix).m41());
+
+#define EXPECT_ROW2_EQ(a, b, c, d, matrix) \
+ EXPECT_FLOAT_EQ((a), (matrix).m12()); \
+ EXPECT_FLOAT_EQ((b), (matrix).m22()); \
+ EXPECT_FLOAT_EQ((c), (matrix).m32()); \
+ EXPECT_FLOAT_EQ((d), (matrix).m42());
+
+#define EXPECT_ROW3_EQ(a, b, c, d, matrix) \
+ EXPECT_FLOAT_EQ((a), (matrix).m13()); \
+ EXPECT_FLOAT_EQ((b), (matrix).m23()); \
+ EXPECT_FLOAT_EQ((c), (matrix).m33()); \
+ EXPECT_FLOAT_EQ((d), (matrix).m43());
+
+#define EXPECT_ROW4_EQ(a, b, c, d, matrix) \
+ EXPECT_FLOAT_EQ((a), (matrix).m14()); \
+ EXPECT_FLOAT_EQ((b), (matrix).m24()); \
+ EXPECT_FLOAT_EQ((c), (matrix).m34()); \
+ EXPECT_FLOAT_EQ((d), (matrix).m44()); \
+
+// Checking float values for equality close to zero is not robust using EXPECT_FLOAT_EQ
+// (see gtest documentation). So, to verify rotation matrices, we must use a looser
+// absolute error threshold in some places.
+#define EXPECT_ROW1_NEAR(a, b, c, d, matrix, errorThreshold) \
+ EXPECT_NEAR((a), (matrix).m11(), (errorThreshold)); \
+ EXPECT_NEAR((b), (matrix).m21(), (errorThreshold)); \
+ EXPECT_NEAR((c), (matrix).m31(), (errorThreshold)); \
+ EXPECT_NEAR((d), (matrix).m41(), (errorThreshold));
+
+#define EXPECT_ROW2_NEAR(a, b, c, d, matrix, errorThreshold) \
+ EXPECT_NEAR((a), (matrix).m12(), (errorThreshold)); \
+ EXPECT_NEAR((b), (matrix).m22(), (errorThreshold)); \
+ EXPECT_NEAR((c), (matrix).m32(), (errorThreshold)); \
+ EXPECT_NEAR((d), (matrix).m42(), (errorThreshold));
+
+#define EXPECT_ROW3_NEAR(a, b, c, d, matrix, errorThreshold) \
+ EXPECT_NEAR((a), (matrix).m13(), (errorThreshold)); \
+ EXPECT_NEAR((b), (matrix).m23(), (errorThreshold)); \
+ EXPECT_NEAR((c), (matrix).m33(), (errorThreshold)); \
+ EXPECT_NEAR((d), (matrix).m43(), (errorThreshold));
+
+#define ERROR_THRESHOLD 1e-14
+#define LOOSE_ERROR_THRESHOLD 1e-7
+
+using namespace WebKit;
+
+namespace {
+
+static void initializeTestMatrix(WebTransformationMatrix& transform)
+{
+ transform.setM11(10);
+ transform.setM12(11);
+ transform.setM13(12);
+ transform.setM14(13);
+ transform.setM21(14);
+ transform.setM22(15);
+ transform.setM23(16);
+ transform.setM24(17);
+ transform.setM31(18);
+ transform.setM32(19);
+ transform.setM33(20);
+ transform.setM34(21);
+ transform.setM41(22);
+ transform.setM42(23);
+ transform.setM43(24);
+ transform.setM44(25);
+
+ // Sanity check
+ EXPECT_ROW1_EQ(10, 14, 18, 22, transform);
+ EXPECT_ROW2_EQ(11, 15, 19, 23, transform);
+ EXPECT_ROW3_EQ(12, 16, 20, 24, transform);
+ EXPECT_ROW4_EQ(13, 17, 21, 25, transform);
+}
+
+static void initializeTestMatrix2(WebTransformationMatrix& transform)
+{
+ transform.setM11(30);
+ transform.setM12(31);
+ transform.setM13(32);
+ transform.setM14(33);
+ transform.setM21(34);
+ transform.setM22(35);
+ transform.setM23(36);
+ transform.setM24(37);
+ transform.setM31(38);
+ transform.setM32(39);
+ transform.setM33(40);
+ transform.setM34(41);
+ transform.setM41(42);
+ transform.setM42(43);
+ transform.setM43(44);
+ transform.setM44(45);
+
+ // Sanity check
+ EXPECT_ROW1_EQ(30, 34, 38, 42, transform);
+ EXPECT_ROW2_EQ(31, 35, 39, 43, transform);
+ EXPECT_ROW3_EQ(32, 36, 40, 44, transform);
+ EXPECT_ROW4_EQ(33, 37, 41, 45, transform);
+}
+
+TEST(WebTransformationMatrixTest, verifyDefaultConstructorCreatesIdentityMatrix)
+{
+ WebTransformationMatrix A;
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+ EXPECT_TRUE(A.isIdentity());
+}
+
+TEST(WebTransformationMatrixTest, verifyConstructorFor2dElements)
+{
+ WebTransformationMatrix A(1, 2, 3, 4, 5, 6);
+ EXPECT_ROW1_EQ(1, 3, 0, 5, A);
+ EXPECT_ROW2_EQ(2, 4, 0, 6, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyConstructorForAllElements)
+{
+ WebTransformationMatrix A(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
+ EXPECT_ROW1_EQ(1, 5, 9, 13, A);
+ EXPECT_ROW2_EQ(2, 6, 10, 14, A);
+ EXPECT_ROW3_EQ(3, 7, 11, 15, A);
+ EXPECT_ROW4_EQ(4, 8, 12, 16, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyCopyConstructor)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+
+ // Copy constructor should produce exact same elements as matrix A.
+ WebTransformationMatrix B(A);
+ EXPECT_ROW1_EQ(10, 14, 18, 22, B);
+ EXPECT_ROW2_EQ(11, 15, 19, 23, B);
+ EXPECT_ROW3_EQ(12, 16, 20, 24, B);
+ EXPECT_ROW4_EQ(13, 17, 21, 25, B);
+}
+
+TEST(WebTransformationMatrixTest, verifyMatrixInversion)
+{
+ // Invert a translation
+ WebTransformationMatrix translation;
+ translation.translate3d(2, 3, 4);
+ EXPECT_TRUE(translation.isInvertible());
+
+ WebTransformationMatrix inverseTranslation = translation.inverse();
+ EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation);
+ EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation);
+ EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation);
+
+ // Note that inversion should not have changed the original matrix.
+ EXPECT_ROW1_EQ(1, 0, 0, 2, translation);
+ EXPECT_ROW2_EQ(0, 1, 0, 3, translation);
+ EXPECT_ROW3_EQ(0, 0, 1, 4, translation);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, translation);
+
+ // Invert a non-uniform scale
+ WebTransformationMatrix scale;
+ scale.scale3d(4, 10, 100);
+ EXPECT_TRUE(scale.isInvertible());
+
+ WebTransformationMatrix inverseScale = scale.inverse();
+ EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale);
+ EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale);
+ EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale);
+
+ // Try to invert a matrix that is not invertible.
+ // The inverse() function should simply return an identity matrix.
+ WebTransformationMatrix notInvertible;
+ notInvertible.setM11(0);
+ notInvertible.setM22(0);
+ notInvertible.setM33(0);
+ notInvertible.setM44(0);
+ EXPECT_FALSE(notInvertible.isInvertible());
+
+ WebTransformationMatrix inverseOfNotInvertible;
+ initializeTestMatrix(inverseOfNotInvertible); // initialize this to something non-identity, to make sure that assignment below actually took place.
+ inverseOfNotInvertible = notInvertible.inverse();
+ EXPECT_TRUE(inverseOfNotInvertible.isIdentity());
+}
+
+TEST(WebTransformationMatrixTest, verifyTo2DTransform)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+
+ WebTransformationMatrix B = A.to2dTransform();
+
+ EXPECT_ROW1_EQ(10, 14, 0, 22, B);
+ EXPECT_ROW2_EQ(11, 15, 0, 23, B);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, B);
+ EXPECT_ROW4_EQ(13, 17, 0, 25, B);
+
+ // Note that to2DTransform should not have changed the original matrix.
+ EXPECT_ROW1_EQ(10, 14, 18, 22, A);
+ EXPECT_ROW2_EQ(11, 15, 19, 23, A);
+ EXPECT_ROW3_EQ(12, 16, 20, 24, A);
+ EXPECT_ROW4_EQ(13, 17, 21, 25, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyAssignmentOperator)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+ WebTransformationMatrix B;
+ initializeTestMatrix2(B);
+ WebTransformationMatrix C;
+ initializeTestMatrix2(C);
+ C = B = A;
+
+ // Both B and C should now have been re-assigned to the value of A.
+ EXPECT_ROW1_EQ(10, 14, 18, 22, B);
+ EXPECT_ROW2_EQ(11, 15, 19, 23, B);
+ EXPECT_ROW3_EQ(12, 16, 20, 24, B);
+ EXPECT_ROW4_EQ(13, 17, 21, 25, B);
+
+ EXPECT_ROW1_EQ(10, 14, 18, 22, C);
+ EXPECT_ROW2_EQ(11, 15, 19, 23, C);
+ EXPECT_ROW3_EQ(12, 16, 20, 24, C);
+ EXPECT_ROW4_EQ(13, 17, 21, 25, C);
+}
+
+TEST(WebTransformationMatrixTest, verifyEqualsBooleanOperator)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+
+ WebTransformationMatrix B;
+ initializeTestMatrix(B);
+ EXPECT_TRUE(A == B);
+
+ // Modifying multiple elements should cause equals operator to return false.
+ WebTransformationMatrix C;
+ initializeTestMatrix2(C);
+ EXPECT_FALSE(A == C);
+
+ // Modifying any one individual element should cause equals operator to return false.
+ WebTransformationMatrix D;
+ D = A;
+ D.setM11(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM12(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM13(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM14(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM21(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM22(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM23(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM24(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM31(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM32(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM33(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM34(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM41(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM42(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM43(0);
+ EXPECT_FALSE(A == D);
+
+ D = A;
+ D.setM44(0);
+ EXPECT_FALSE(A == D);
+}
+
+TEST(WebTransformationMatrixTest, verifyMultiplyOperator)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+
+ WebTransformationMatrix B;
+ initializeTestMatrix2(B);
+
+ WebTransformationMatrix C = A * B;
+ EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C);
+ EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C);
+ EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C);
+ EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C);
+
+ // Just an additional sanity check; matrix multiplication is not commutative.
+ EXPECT_FALSE(A * B == B * A);
+}
+
+TEST(WebTransformationMatrixTest, verifyMatrixMultiplication)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+
+ WebTransformationMatrix B;
+ initializeTestMatrix2(B);
+
+ A.multiply(B);
+ EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A);
+ EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A);
+ EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A);
+ EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyMakeIdentiy)
+{
+ WebTransformationMatrix A;
+ initializeTestMatrix(A);
+ A.makeIdentity();
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+ EXPECT_TRUE(A.isIdentity());
+}
+
+TEST(WebTransformationMatrixTest, verifyTranslate)
+{
+ WebTransformationMatrix A;
+ A.translate(2, 3);
+ EXPECT_ROW1_EQ(1, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that translate() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale(5);
+ A.translate(2, 3);
+ EXPECT_ROW1_EQ(5, 0, 0, 10, A);
+ EXPECT_ROW2_EQ(0, 5, 0, 15, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyTranslate3d)
+{
+ WebTransformationMatrix A;
+ A.translate3d(2, 3, 4);
+ EXPECT_ROW1_EQ(1, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that translate3d() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.translate3d(2, 3, 4);
+ EXPECT_ROW1_EQ(6, 0, 0, 12, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 21, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 32, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyTranslateRight3d)
+{
+ WebTransformationMatrix A;
+ A.translateRight3d(2, 3, 4);
+ EXPECT_ROW1_EQ(1, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Note carefully, all other operations do post-multiply, this one is unique.
+ // Verify that translateRight3d() PRE-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.translateRight3d(2, 3, 4);
+ EXPECT_ROW1_EQ(6, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyScale)
+{
+ WebTransformationMatrix A;
+ A.scale(5);
+ EXPECT_ROW1_EQ(5, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 5, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that scale() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.translate3d(2, 3, 4);
+ A.scale(5);
+ EXPECT_ROW1_EQ(5, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 5, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyNonUniformScale)
+{
+ WebTransformationMatrix A;
+ A.scaleNonUniform(6, 7);
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that scaleNonUniform() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.translate3d(2, 3, 4);
+ A.scaleNonUniform(6, 7);
+ EXPECT_ROW1_EQ(6, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyScale3d)
+{
+ WebTransformationMatrix A;
+ A.scale3d(6, 7, 8);
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that scale3d() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.translate3d(2, 3, 4);
+ A.scale3d(6, 7, 8);
+ EXPECT_ROW1_EQ(6, 0, 0, 2, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 3, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 4, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotate)
+{
+ WebTransformationMatrix A;
+ A.rotate(90);
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that rotate() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.rotate(90);
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotate3d)
+{
+ WebTransformationMatrix A;
+
+ // Check rotation about z-axis
+ A.makeIdentity();
+ A.rotate3d(0, 0, 90);
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Check rotation about x-axis
+ A.makeIdentity();
+ A.rotate3d(90, 0, 0);
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Check rotation about y-axis.
+ // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis.
+ A.makeIdentity();
+ A.rotate3d(0, 90, 0);
+ EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.rotate3d(0, 0, 90);
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotate3dOrderOfCompositeRotations)
+{
+ // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform consiting of
+ // three primitive rotations. This test verifies that the ordering of those three
+ // transforms is the intended ordering.
+ //
+ // The correct ordering for this test case should be:
+ // 1. rotate by 30 degrees about z-axis
+ // 2. rotate by 20 degrees about y-axis
+ // 3. rotate by 10 degrees about x-axis
+ //
+ // Note: there are 6 possible orderings of 3 transforms. For the specific transforms
+ // used in this test, all 6 combinations produce a unique matrix that is different
+ // from the other orderings. That way, this test verifies the exact ordering.
+
+ WebTransformationMatrix A;
+ A.makeIdentity();
+ A.rotate3d(10, 20, 30);
+
+ EXPECT_ROW1_NEAR(0.8137976813493738026394908,
+ -0.4409696105298823720630708,
+ 0.3785223063697923939763257,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0.4698463103929541584413698,
+ 0.8825641192593856043657752,
+ 0.0180283112362972230968694,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(-0.3420201433256686573969318,
+ 0.1631759111665348205288950,
+ 0.9254165783983233639631294,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3d)
+{
+ WebTransformationMatrix A;
+
+ // Check rotation about z-axis
+ A.makeIdentity();
+ A.rotate3d(0, 0, 1, 90);
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Check rotation about x-axis
+ A.makeIdentity();
+ A.rotate3d(1, 0, 0, 90);
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Check rotation about y-axis.
+ // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis.
+ A.makeIdentity();
+ A.rotate3d(0, 1, 0, 90);
+ EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that rotate3d(axis, angle) post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.rotate3d(0, 0, 1, 90);
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForArbitraryAxis)
+{
+ // Check rotation about an arbitrary non-axis-aligned vector.
+ WebTransformationMatrix A;
+ A.rotate3d(1, 1, 1, 90);
+ EXPECT_ROW1_NEAR(0.3333333333333334258519187,
+ -0.2440169358562924717404030,
+ 0.9106836025229592124219380,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0.9106836025229592124219380,
+ 0.3333333333333334258519187,
+ -0.2440169358562924717404030,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(-0.2440169358562924717404030,
+ 0.9106836025229592124219380,
+ 0.3333333333333334258519187,
+ 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForDegenerateAxis)
+{
+ // Check rotation about a degenerate zero vector.
+ // It is expected to default to rotation about the z-axis.
+ WebTransformationMatrix A;
+ A.rotate3d(0, 0, 0, 90);
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifySkewX)
+{
+ WebTransformationMatrix A;
+ A.skewX(45);
+ EXPECT_ROW1_EQ(1, 1, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that skewX() post-multiplies the existing matrix.
+ // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-multiplied instead of post-multiplied.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.skewX(45);
+ EXPECT_ROW1_EQ(6, 6, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifySkewY)
+{
+ WebTransformationMatrix A;
+ A.skewY(45);
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(1, 1, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+
+ // Verify that skewY() post-multiplies the existing matrix.
+ // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-multiplied instead of post-multiplied.
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ A.skewY(45);
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(7, 7, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyApplyPerspective)
+{
+ WebTransformationMatrix A;
+ A.applyPerspective(1);
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A);
+ EXPECT_ROW4_EQ(0, 0, -1, 1, A);
+
+ // Verify that applyPerspective() post-multiplies the existing matrix.
+ A.makeIdentity();
+ A.translate3d(2, 3, 4);
+ A.applyPerspective(1);
+ EXPECT_ROW1_EQ(1, 0, -2, 2, A);
+ EXPECT_ROW2_EQ(0, 1, -3, 3, A);
+ EXPECT_ROW3_EQ(0, 0, -3, 4, A);
+ EXPECT_ROW4_EQ(0, 0, -1, 1, A);
+}
+
+TEST(WebTransformationMatrixTest, verifyHasPerspective)
+{
+ WebTransformationMatrix A;
+ A.applyPerspective(1);
+ EXPECT_TRUE(A.hasPerspective());
+
+ A.makeIdentity();
+ A.applyPerspective(0);
+ EXPECT_FALSE(A.hasPerspective());
+
+ A.makeIdentity();
+ A.setM34(-0.3);
+ EXPECT_TRUE(A.hasPerspective());
+
+ // FIXME: WebCore only checkes m34() for perspective, but that is probably
+ // wrong. https://bugs.webkit.org/show_bug.cgi?id=83088. For now, this test
+ // case expects the exact behavior as implemented by WebCore, but this should
+ // probably be changed so that if the entire bottom row is not exactly
+ // (0, 0, 0, 1), then hasPerspective should return true.
+
+ A.makeIdentity();
+ A.setM14(-1);
+ EXPECT_FALSE(A.hasPerspective());
+
+ A.makeIdentity();
+ A.setM24(-1);
+ EXPECT_FALSE(A.hasPerspective());
+
+ A.makeIdentity();
+ A.setM44(0.5);
+ EXPECT_FALSE(A.hasPerspective());
+}
+
+TEST(WebTransformationMatrixTest, verifyIsInvertible)
+{
+ WebTransformationMatrix A;
+
+ // Translations, rotations, scales, skews and arbitrary combinations of them are invertible.
+ A.makeIdentity();
+ EXPECT_TRUE(A.isInvertible());
+
+ A.makeIdentity();
+ A.translate3d(2, 3, 4);
+ EXPECT_TRUE(A.isInvertible());
+
+ A.makeIdentity();
+ A.scale3d(6, 7, 8);
+ EXPECT_TRUE(A.isInvertible());
+
+ A.makeIdentity();
+ A.rotate3d(10, 20, 30);
+ EXPECT_TRUE(A.isInvertible());
+
+ A.makeIdentity();
+ A.skewX(45);
+ EXPECT_TRUE(A.isInvertible());
+
+ // A perspective matrix (projection plane at z=0) is invertible. The intuitive
+ // explanation is that perspective is eqivalent to a skew of the w-axis; skews are
+ // invertible.
+ A.makeIdentity();
+ A.applyPerspective(1);
+ EXPECT_TRUE(A.isInvertible());
+
+ // A "pure" perspective matrix derived by similar triangles, with m44() set to zero
+ // (i.e. camera positioned at the origin), is not invertible.
+ A.makeIdentity();
+ A.applyPerspective(1);
+ A.setM44(0);
+ EXPECT_FALSE(A.isInvertible());
+
+ // Adding more to a non-invertible matrix will not make it invertible in the general case.
+ A.makeIdentity();
+ A.applyPerspective(1);
+ A.setM44(0);
+ A.scale3d(6, 7, 8);
+ A.rotate3d(10, 20, 30);
+ A.translate3d(6, 7, 8);
+ EXPECT_FALSE(A.isInvertible());
+
+ // A degenerate matrix of all zeros is not invertible.
+ A.makeIdentity();
+ A.setM11(0);
+ A.setM22(0);
+ A.setM33(0);
+ A.setM44(0);
+ EXPECT_FALSE(A.isInvertible());
+}
+
+TEST(WebTransformationMatrixTest, verifyIsIdentity)
+{
+ WebTransformationMatrix A;
+
+ initializeTestMatrix(A);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ EXPECT_TRUE(A.isIdentity());
+
+ // Modifying any one individual element should cause the matrix to no longer be identity.
+ A.makeIdentity();
+ A.setM11(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM12(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM13(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM14(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM21(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM22(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM23(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM24(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM31(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM32(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM33(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM34(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM41(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM42(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM43(2);
+ EXPECT_FALSE(A.isIdentity());
+
+ A.makeIdentity();
+ A.setM44(2);
+ EXPECT_FALSE(A.isIdentity());
+}
+
+TEST(WebTransformationMatrixTest, verifyIsIdentityOrTranslation)
+{
+ WebTransformationMatrix A;
+
+ initializeTestMatrix(A);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ EXPECT_TRUE(A.isIdentityOrTranslation());
+
+ // Modifying any non-translation components should cause isIdentityOrTranslation() to
+ // return false. NOTE: m41(), m42(), and m43() are the translation components, so
+ // modifying them should still return true for isIdentityOrTranslation().
+ A.makeIdentity();
+ A.setM11(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM12(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM13(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM14(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM21(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM22(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM23(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM24(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM31(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM32(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM33(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM34(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+
+ // Note carefully - expecting true here.
+ A.makeIdentity();
+ A.setM41(2);
+ EXPECT_TRUE(A.isIdentityOrTranslation());
+
+ // Note carefully - expecting true here.
+ A.makeIdentity();
+ A.setM42(2);
+ EXPECT_TRUE(A.isIdentityOrTranslation());
+
+ // Note carefully - expecting true here.
+ A.makeIdentity();
+ A.setM43(2);
+ EXPECT_TRUE(A.isIdentityOrTranslation());
+
+ A.makeIdentity();
+ A.setM44(2);
+ EXPECT_FALSE(A.isIdentityOrTranslation());
+}
+
+TEST(WebTransformationMatrixTest, verifyIsIntegerTranslation)
+{
+ WebTransformationMatrix A;
+
+ A.makeIdentity();
+ A.translate(2, 3);
+ EXPECT_TRUE(A.isIntegerTranslation());
+
+ A.makeIdentity();
+ A.translate(2, 3);
+ EXPECT_TRUE(A.isIntegerTranslation());
+
+ A.makeIdentity();
+ A.translate(2.00001, 3);
+ EXPECT_FALSE(A.isIntegerTranslation());
+
+ A.makeIdentity();
+ A.translate(2, 2.99999);
+ EXPECT_FALSE(A.isIntegerTranslation());
+
+ // Stacking many integer translations should ideally not accumulate any precision error.
+ A.makeIdentity();
+ for (int i = 0; i < 100000; ++i)
+ A.translate(2, 3);
+ EXPECT_TRUE(A.isIntegerTranslation());
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForTranslation)
+{
+ WebTransformationMatrix from;
+ from.translate3d(100, 200, 100);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.translate3d(200, 100, 300);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ to.makeIdentity();
+ to.translate3d(200, 100, 300);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_EQ(1, 0, 0, 125, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 175, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 150, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.translate3d(200, 100, 300);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_EQ(1, 0, 0, 150, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 150, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 200, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.translate3d(200, 100, 300);
+ to.blend(from, 1);
+ EXPECT_ROW1_EQ(1, 0, 0, 200, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 100, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 300, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForScale)
+{
+ WebTransformationMatrix from;
+ from.scale3d(100, 200, 100);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.scale3d(200, 100, 300);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ to.makeIdentity();
+ to.scale3d(200, 100, 300);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_EQ(125, 0, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 175, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 150, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.scale3d(200, 100, 300);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_EQ(150, 0, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 150, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 200, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.scale3d(200, 100, 300);
+ to.blend(from, 1);
+ EXPECT_ROW1_EQ(200, 0, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 100, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 300, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForSkewX)
+{
+ WebTransformationMatrix from;
+ from.skewX(0);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.skewX(45);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ to.makeIdentity();
+ to.skewX(45);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_EQ(1, 0.5, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.skewX(45);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_EQ(1, 0.25, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.skewX(45);
+ to.blend(from, 1);
+ EXPECT_ROW1_EQ(1, 1, 0, 0, to);
+ EXPECT_ROW2_EQ(0, 1, 0, 0, to);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForSkewY)
+{
+ // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix is
+ // inherently underconstrained, and so it does not always compute the originally
+ // intended skew parameters. The current implementation uses QR decomposition, which
+ // decomposes the shear into a rotation + non-uniform scale.
+ //
+ // It is unlikely that the decomposition implementation will need to change very
+ // often, so to get any test coverage, the compromise is to verify the exact matrix
+ // that the blend() operation produces.
+ //
+ // This problem also potentially exists for skewX, but the current QR decomposition
+ // implementation just happens to decompose those test matrices intuitively.
+
+ WebTransformationMatrix from;
+ from.skewY(0);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.skewY(45);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ to.makeIdentity();
+ to.skewY(45);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_NEAR(1.0823489449280947471976333, 0.0464370719145053845178239, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0.2152925909665224513123150, 0.9541702441750861130032035, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.skewY(45);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_NEAR(1.1152212925809066312865525, 0.0676495144007326631996335, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0.4619397844342648662419037, 0.9519009045724774464858342, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ // Unfortunately, this case suffers from uncomfortably large precision error.
+ to.makeIdentity();
+ to.skewY(45);
+ to.blend(from, 1);
+ EXPECT_ROW1_NEAR(1, 0, 0, 0, to, LOOSE_ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 1, 0, 0, to, LOOSE_ERROR_THRESHOLD);
+ EXPECT_ROW3_EQ(0, 0, 1, 0, to);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutX)
+{
+ // Even though blending uses quaternions, axis-aligned rotations should blend the same
+ // with quaternions or Euler angles. So we can test rotation blending by comparing
+ // against manually specified matrices from Euler angles.
+
+ WebTransformationMatrix from;
+ from.rotate3d(1, 0, 0, 0);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.rotate3d(1, 0, 0, 90);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ double expectedRotationAngle = 22.5 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(1, 0, 0, 90);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ expectedRotationAngle = 45 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(1, 0, 0, 90);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.rotate3d(1, 0, 0, 90);
+ to.blend(from, 1);
+ EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, 0, -1, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutY)
+{
+ WebTransformationMatrix from;
+ from.rotate3d(0, 1, 0, 0);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.rotate3d(0, 1, 0, 90);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ double expectedRotationAngle = 22.5 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(0, 1, 0, 90);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ expectedRotationAngle = 45 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(0, 1, 0, 90);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.rotate3d(0, 1, 0, 90);
+ to.blend(from, 1);
+ EXPECT_ROW1_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(-1, 0, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutZ)
+{
+ WebTransformationMatrix from;
+ from.rotate3d(0, 0, 1, 0);
+
+ WebTransformationMatrix to;
+
+ to.makeIdentity();
+ to.rotate3d(0, 0, 1, 90);
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ double expectedRotationAngle = 22.5 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(0, 0, 1, 90);
+ to.blend(from, 0.25);
+ EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ expectedRotationAngle = 45 * piDouble / 180.0;
+ to.makeIdentity();
+ to.rotate3d(0, 0, 1, 90);
+ to.blend(from, 0.5);
+ EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+
+ to.makeIdentity();
+ to.rotate3d(0, 0, 1, 90);
+ to.blend(from, 1);
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD);
+ EXPECT_ROW4_EQ(0, 0, 0, 1, to);
+}
+
+
+TEST(WebTransformationMatrixTest, verifyBlendForCompositeTransform)
+{
+ // Verify that the blending was done with a decomposition in correct order by blending
+ // a composite transform.
+ // Using matrix x vector notation (Ax = b, where x is column vector), the ordering should be:
+ // perspective * translation * rotation * skew * scale
+ //
+ // It is not as important (or meaningful) to check intermediate interpolations; order
+ // of operations will be tested well enough by the end cases that are easier to
+ // specify.
+
+ WebTransformationMatrix from;
+ WebTransformationMatrix to;
+
+ WebTransformationMatrix expectedEndOfAnimation;
+ expectedEndOfAnimation.applyPerspective(1);
+ expectedEndOfAnimation.translate3d(10, 20, 30);
+ expectedEndOfAnimation.rotate3d(0, 0, 1, 25);
+ expectedEndOfAnimation.skewY(45);
+ expectedEndOfAnimation.scale3d(6, 7, 8);
+
+ to = expectedEndOfAnimation;
+ to.blend(from, 0);
+ EXPECT_TRANSFORMATION_MATRIX_EQ(from, to);
+
+ to = expectedEndOfAnimation;
+ to.blend(from, 1);
+
+ // Recomposing the matrix results in a normalized matrix, so to verify we need to
+ // normalize the expectedEndOfAnimation before comparing elements. Normalizing means
+ // dividing everything by expectedEndOfAnimation.m44().
+ WebTransformationMatrix normalizedExpectedEndOfAnimation = expectedEndOfAnimation;
+ WebTransformationMatrix normalizationMatrix;
+ normalizationMatrix.setM11(1 / expectedEndOfAnimation.m44());
+ normalizationMatrix.setM22(1 / expectedEndOfAnimation.m44());
+ normalizationMatrix.setM33(1 / expectedEndOfAnimation.m44());
+ normalizationMatrix.setM44(1 / expectedEndOfAnimation.m44());
+ normalizedExpectedEndOfAnimation.multiply(normalizationMatrix);
+
+ EXPECT_TRANSFORMATION_MATRIX_EQ(normalizedExpectedEndOfAnimation, to);
+}
+
+} // namespace
« no previous file with comments | « webkit/compositor/WebTransformOperationsTest.cpp ('k') | webkit/compositor/compositor.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698