Index: lib/fixnum/int64.dart |
=================================================================== |
--- lib/fixnum/int64.dart (revision 10735) |
+++ lib/fixnum/int64.dart (working copy) |
@@ -1,1095 +0,0 @@ |
-// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
-// for details. All rights reserved. Use of this source code is governed by a |
-// BSD-style license that can be found in the LICENSE file. |
- |
-/** |
- * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1]. |
- * Arithmetic operations may overflow in order to maintain this range. |
- */ |
-class int64 implements intx { |
- |
- // A 64-bit integer is represented internally as three non-negative |
- // integers, storing the 22 low, 22 middle, and 20 high bits of the |
- // 64-bit value. _l (low) and _m (middle) are in the range |
- // [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1]. |
- int _l, _m, _h; |
- |
- // Note: instances of int64 are immutable outside of this library, |
- // therefore we may return a reference to an existing instance. |
- // We take care to perform mutation only on internally-generated |
- // instances before they are exposed to external code. |
- |
- // Note: several functions require _BITS == 22 -- do not change this value. |
- static final int _BITS = 22; |
- static final int _BITS01 = 44; // 2 * _BITS |
- static final int _BITS2 = 20; // 64 - _BITS01 |
- static final int _MASK = 4194303; // (1 << _BITS) - 1 |
- static final int _MASK_2 = 1048575; // (1 << _BITS2) - 1 |
- static final int _SIGN_BIT = 19; // _BITS2 - 1 |
- static final int _SIGN_BIT_VALUE = 524288; // 1 << _SIGN_BIT |
- |
- // Cached constants |
- static int64 _MAX_VALUE; |
- static int64 _MIN_VALUE; |
- static int64 _ZERO; |
- static int64 _ONE; |
- static int64 _TWO; |
- |
- // Precompute the radix strings for MIN_VALUE to avoid the problem |
- // of overflow of -MIN_VALUE. |
- static List<String> _minValues = const <String>[ |
- null, null, |
- "-1000000000000000000000000000000000000000000000000000000000000000", // 2 |
- "-2021110011022210012102010021220101220222", // base 3 |
- "-20000000000000000000000000000000", // base 4 |
- "-1104332401304422434310311213", // base 5 |
- "-1540241003031030222122212", // base 6 |
- "-22341010611245052052301", // base 7 |
- "-1000000000000000000000", // base 8 |
- "-67404283172107811828", // base 9 |
- "-9223372036854775808", // base 10 |
- "-1728002635214590698", // base 11 |
- "-41A792678515120368", // base 12 |
- "-10B269549075433C38", // base 13 |
- "-4340724C6C71DC7A8", // base 14 |
- "-160E2AD3246366808", // base 15 |
- "-8000000000000000" // base 16 |
- ]; |
- |
- // The remainder of the last divide operation. |
- static int64 _remainder; |
- |
- /** |
- * The maximum positive value attainable by an [int64], namely |
- * 9,223,372,036,854,775,807. |
- */ |
- static int64 get MAX_VALUE() { |
- if (_MAX_VALUE == null) { |
- _MAX_VALUE = new int64._bits(_MASK, _MASK, _MASK_2 >> 1); |
- } |
- return _MAX_VALUE; |
- } |
- |
- /** |
- * The minimum positive value attainable by an [int64], namely |
- * -9,223,372,036,854,775,808. |
- */ |
- static int64 get MIN_VALUE() { |
- if (_MIN_VALUE == null) { |
- _MIN_VALUE = new int64._bits(0, 0, _SIGN_BIT_VALUE); |
- } |
- return _MIN_VALUE; |
- } |
- |
- /** |
- * An [int64] constant equal to 0. |
- */ |
- static int64 get ZERO() { |
- if (_ZERO == null) { |
- _ZERO = new int64(); |
- } |
- return _ZERO; |
- } |
- |
- /** |
- * An [int64] constant equal to 1. |
- */ |
- static int64 get ONE() { |
- if (_ONE == null) { |
- _ONE = new int64._bits(1, 0, 0); |
- } |
- return _ONE; |
- } |
- |
- /** |
- * An [int64] constant equal to 2. |
- */ |
- static int64 get TWO() { |
- if (_TWO == null) { |
- _TWO = new int64._bits(2, 0, 0); |
- } |
- return _TWO; |
- } |
- |
- /** |
- * Parses a [String] in a given [radix] between 2 and 16 and returns an |
- * [int64]. |
- */ |
- // TODO(rice) - make this faster by converting several digits at once. |
- static int64 parseRadix(String s, int radix) { |
- if ((radix <= 1) || (radix > 16)) { |
- throw "Bad radix: $radix"; |
- } |
- int64 x = ZERO; |
- int i = 0; |
- bool negative = false; |
- if (s[0] == '-') { |
- negative = true; |
- i++; |
- } |
- for (; i < s.length; i++) { |
- int c = s.charCodeAt(i); |
- int digit = int32._decodeHex(c); |
- if (digit < 0 || digit >= radix) { |
- throw new Exception("Non-radix char code: $c"); |
- } |
- x = (x * radix) + digit; |
- } |
- return negative ? -x : x; |
- } |
- |
- /** |
- * Parses a decimal [String] and returns an [int64]. |
- */ |
- static int64 parseInt(String s) => parseRadix(s, 10); |
- |
- /** |
- * Parses a hexadecimal [String] and returns an [int64]. |
- */ |
- static int64 parseHex(String s) => parseRadix(s, 16); |
- |
- // |
- // Public constructors |
- // |
- |
- /** |
- * Constructs an [int64] equal to 0. |
- */ |
- int64() : _l = 0, _m = 0, _h = 0; |
- |
- /** |
- * Constructs an [int64] with a given [int] value. |
- */ |
- int64.fromInt(int value) { |
- bool negative = false; |
- if (value < 0) { |
- negative = true; |
- value = -value - 1; |
- } |
- if (_haveBigInts) { |
- _l = value & _MASK; |
- _m = (value >> _BITS) & _MASK; |
- _h = (value >> _BITS01) & _MASK_2; |
- } else { |
- // Avoid using bitwise operations that coerce their input to 32 bits. |
- _h = value ~/ 17592186044416; // 2^44 |
- value -= _h * 17592186044416; |
- _m = value ~/ 4194304; // 2^22 |
- value -= _m * 4194304; |
- _l = value; |
- } |
- |
- if (negative) { |
- _l = ~_l & _MASK; |
- _m = ~_m & _MASK; |
- _h = ~_h & _MASK_2; |
- } |
- } |
- |
- factory int64.fromBytes(List<int> bytes) { |
- int top = bytes[7] & 0xff; |
- top <<= 8; |
- top |= bytes[6] & 0xff; |
- top <<= 8; |
- top |= bytes[5] & 0xff; |
- top <<= 8; |
- top |= bytes[4] & 0xff; |
- |
- int bottom = bytes[3] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[2] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[1] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[0] & 0xff; |
- |
- return new int64.fromInts(top, bottom); |
- } |
- |
- factory int64.fromBytesBigEndian(List<int> bytes) { |
- int top = bytes[0] & 0xff; |
- top <<= 8; |
- top |= bytes[1] & 0xff; |
- top <<= 8; |
- top |= bytes[2] & 0xff; |
- top <<= 8; |
- top |= bytes[3] & 0xff; |
- |
- int bottom = bytes[4] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[5] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[6] & 0xff; |
- bottom <<= 8; |
- bottom |= bytes[7] & 0xff; |
- |
- return new int64.fromInts(top, bottom); |
- } |
- |
- /** |
- * Constructs an [int64] from a pair of 32-bit integers having the value |
- * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):]. |
- */ |
- int64.fromInts(int top, int bottom) { |
- top &= 0xffffffff; |
- bottom &= 0xffffffff; |
- _l = bottom & _MASK; |
- _m = ((top & 0xfff) << 10) | ((bottom >> _BITS) & 0x3ff); |
- _h = (top >> 12) & _MASK_2; |
- } |
- |
- int64 _promote(other) { |
- if (other == null) { |
- throw new NullPointerException(); |
- } else if (other is intx) { |
- other = other.toInt64(); |
- } else if (other is int) { |
- other = new int64.fromInt(other); |
- } |
- if (other is !int64) { |
- throw new Exception("Can't promote $other to int64"); |
- } |
- return other; |
- } |
- |
- int64 operator +(other) { |
- int64 o = _promote(other); |
- int sum0 = _l + o._l; |
- int sum1 = _m + o._m + _shiftRight(sum0, _BITS); |
- int sum2 = _h + o._h + _shiftRight(sum1, _BITS); |
- |
- int64 result = new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2); |
- return result; |
- } |
- |
- int64 operator -(other) { |
- int64 o = _promote(other); |
- |
- int sum0 = _l - o._l; |
- int sum1 = _m - o._m + _shiftRight(sum0, _BITS); |
- int sum2 = _h - o._h + _shiftRight(sum1, _BITS); |
- |
- int64 result = new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2); |
- return result; |
- } |
- |
- int64 operator negate() { |
- // Like 0 - this. |
- int sum0 = -_l; |
- int sum1 = -_m + _shiftRight(sum0, _BITS); |
- int sum2 = -_h + _shiftRight(sum1, _BITS); |
- |
- return new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2); |
- } |
- |
- int64 operator *(other) { |
- int64 o = _promote(other); |
- // Grab 13-bit chunks. |
- int a0 = _l & 0x1fff; |
- int a1 = (_l >> 13) | ((_m & 0xf) << 9); |
- int a2 = (_m >> 4) & 0x1fff; |
- int a3 = (_m >> 17) | ((_h & 0xff) << 5); |
- int a4 = (_h & 0xfff00) >> 8; |
- |
- int b0 = o._l & 0x1fff; |
- int b1 = (o._l >> 13) | ((o._m & 0xf) << 9); |
- int b2 = (o._m >> 4) & 0x1fff; |
- int b3 = (o._m >> 17) | ((o._h & 0xff) << 5); |
- int b4 = (o._h & 0xfff00) >> 8; |
- |
- // Compute partial products. |
- // Optimization: if b is small, avoid multiplying by parts that are 0. |
- int p0 = a0 * b0; // << 0 |
- int p1 = a1 * b0; // << 13 |
- int p2 = a2 * b0; // << 26 |
- int p3 = a3 * b0; // << 39 |
- int p4 = a4 * b0; // << 52 |
- |
- if (b1 != 0) { |
- p1 += a0 * b1; |
- p2 += a1 * b1; |
- p3 += a2 * b1; |
- p4 += a3 * b1; |
- } |
- if (b2 != 0) { |
- p2 += a0 * b2; |
- p3 += a1 * b2; |
- p4 += a2 * b2; |
- } |
- if (b3 != 0) { |
- p3 += a0 * b3; |
- p4 += a1 * b3; |
- } |
- if (b4 != 0) { |
- p4 += a0 * b4; |
- } |
- |
- // Accumulate into 22-bit chunks: |
- // .........................................c10|...................c00| |
- // |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0 |
- // |....................|......................|......................| |
- // |....................|...................c11|......c01.............| |
- // |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1 |
- // |....................|......................|......................| |
- // |.................c22|...............c12....|......................| |
- // |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2 |
- // |....................|......................|......................| |
- // |.................c23|..c13.................|......................| |
- // |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3 |
- // |....................|......................|......................| |
- // |.........c24........|......................|......................| |
- // |xxxxxxxxxxxx........|......................|......................| p4 |
- |
- int c00 = p0 & 0x3fffff; |
- int c01 = (p1 & 0x1ff) << 13; |
- int c0 = c00 + c01; |
- |
- int c10 = p0 >> 22; |
- int c11 = p1 >> 9; |
- int c12 = (p2 & 0x3ffff) << 4; |
- int c13 = (p3 & 0x1f) << 17; |
- int c1 = c10 + c11 + c12 + c13; |
- |
- int c22 = p2 >> 18; |
- int c23 = p3 >> 5; |
- int c24 = (p4 & 0xfff) << 8; |
- int c2 = c22 + c23 + c24; |
- |
- // Propagate high bits from c0 -> c1, c1 -> c2. |
- c1 += c0 >> _BITS; |
- c0 &= _MASK; |
- c2 += c1 >> _BITS; |
- c1 &= _MASK; |
- c2 &= _MASK_2; |
- |
- return new int64._bits(c0, c1, c2); |
- } |
- |
- int64 operator %(other) { |
- if (other.isZero()) { |
- throw new IntegerDivisionByZeroException(); |
- } |
- if (this.isZero()) { |
- return ZERO; |
- } |
- int64 o = _promote(other).abs(); |
- _divMod(this, o, true); |
- return _remainder < 0 ? (_remainder + o) : _remainder; |
- } |
- |
- int64 operator ~/(other) => _divMod(this, _promote(other), false); |
- |
- // int64 remainder(other) => this - (this ~/ other) * other; |
- int64 remainder(other) { |
- if (other.isZero()) { |
- throw new IntegerDivisionByZeroException(); |
- } |
- int64 o = _promote(other).abs(); |
- _divMod(this, o, true); |
- return _remainder; |
- } |
- |
- int64 operator &(other) { |
- int64 o = _promote(other); |
- int a0 = _l & o._l; |
- int a1 = _m & o._m; |
- int a2 = _h & o._h; |
- return new int64._bits(a0, a1, a2); |
- } |
- |
- int64 operator |(other) { |
- int64 o = _promote(other); |
- int a0 = _l | o._l; |
- int a1 = _m | o._m; |
- int a2 = _h | o._h; |
- return new int64._bits(a0, a1, a2); |
- } |
- |
- int64 operator ^(other) { |
- int64 o = _promote(other); |
- int a0 = _l ^ o._l; |
- int a1 = _m ^ o._m; |
- int a2 = _h ^ o._h; |
- return new int64._bits(a0, a1, a2); |
- } |
- |
- int64 operator ~() { |
- var result = new int64._bits((~_l) & _MASK, (~_m) & _MASK, (~_h) & _MASK_2); |
- return result; |
- } |
- |
- int64 operator <<(int n) { |
- if (n < 0) { |
- throw new IllegalArgumentException("$n"); |
- } |
- n &= 63; |
- |
- int res0, res1, res2; |
- if (n < _BITS) { |
- res0 = _l << n; |
- res1 = (_m << n) | (_l >> (_BITS - n)); |
- res2 = (_h << n) | (_m >> (_BITS - n)); |
- } else if (n < _BITS01) { |
- res0 = 0; |
- res1 = _l << (n - _BITS); |
- res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n)); |
- } else { |
- res0 = 0; |
- res1 = 0; |
- res2 = _l << (n - _BITS01); |
- } |
- |
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2); |
- } |
- |
- int64 operator >>(int n) { |
- if (n < 0) { |
- throw new IllegalArgumentException("$n"); |
- } |
- n &= 63; |
- |
- int res0, res1, res2; |
- |
- // Sign extend h(a). |
- int a2 = _h; |
- bool negative = (a2 & _SIGN_BIT_VALUE) != 0; |
- if (negative) { |
- a2 += 0x3 << _BITS2; // add extra one bits on the left |
- } |
- |
- if (n < _BITS) { |
- res2 = _shiftRight(a2, n); |
- if (negative) { |
- res2 |= _MASK_2 & ~(_MASK_2 >> n); |
- } |
- res1 = _shiftRight(_m, n) | (a2 << (_BITS - n)); |
- res0 = _shiftRight(_l, n) | (_m << (_BITS - n)); |
- } else if (n < _BITS01) { |
- res2 = negative ? _MASK_2 : 0; |
- res1 = _shiftRight(a2, n - _BITS); |
- if (negative) { |
- res1 |= _MASK & ~(_MASK >> (n - _BITS)); |
- } |
- res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n)); |
- } else { |
- res2 = negative ? _MASK_2 : 0; |
- res1 = negative ? _MASK : 0; |
- res0 = _shiftRight(a2, n - _BITS01); |
- if (negative) { |
- res0 |= _MASK & ~(_MASK >> (n - _BITS01)); |
- } |
- } |
- |
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2); |
- } |
- |
- int64 shiftRightUnsigned(int n) { |
- if (n < 0) { |
- throw new IllegalArgumentException("$n"); |
- } |
- n &= 63; |
- |
- int res0, res1, res2; |
- int a2 = _h & _MASK_2; // Ensure a2 is positive. |
- if (n < _BITS) { |
- res2 = a2 >> n; |
- res1 = (_m >> n) | (a2 << (_BITS - n)); |
- res0 = (_l >> n) | (_m << (_BITS - n)); |
- } else if (n < _BITS01) { |
- res2 = 0; |
- res1 = a2 >> (n - _BITS); |
- res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n)); |
- } else { |
- res2 = 0; |
- res1 = 0; |
- res0 = a2 >> (n - _BITS01); |
- } |
- |
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2); |
- } |
- |
- /** |
- * Returns [true] if this [int64] has the same numeric value as the |
- * given object. The argument may be an [int] or an [intx]. |
- */ |
- bool operator ==(other) { |
- if (other == null) { |
- return false; |
- } |
- int64 o = _promote(other); |
- return _l == o._l && _m == o._m && _h == o._h; |
- } |
- |
- int compareTo(Comparable other) { |
- int64 o = _promote(other); |
- int signa = _h >> (_BITS2 - 1); |
- int signb = o._h >> (_BITS2 - 1); |
- if (signa != signb) { |
- return signa == 0 ? 1 : -1; |
- } |
- if (_h > o._h) { |
- return 1; |
- } else if (_h < o._h) { |
- return -1; |
- } |
- if (_m > o._m) { |
- return 1; |
- } else if (_m < o._m) { |
- return -1; |
- } |
- if (_l > o._l) { |
- return 1; |
- } else if (_l < o._l) { |
- return -1; |
- } |
- return 0; |
- } |
- |
- bool operator <(other) { |
- return this.compareTo(other) < 0; |
- } |
- |
- bool operator <=(other) { |
- return this.compareTo(other) <= 0; |
- } |
- |
- bool operator >(other) { |
- return this.compareTo(other) > 0; |
- } |
- |
- bool operator >=(other) { |
- return this.compareTo(other) >= 0; |
- } |
- |
- bool isEven() => (_l & 0x1) == 0; |
- bool isMaxValue() => (_h == _MASK_2 >> 1) && _m == _MASK && _l == _MASK; |
- bool isMinValue() => _h == _SIGN_BIT_VALUE && _m == 0 && _l == 0; |
- bool isNegative() => (_h >> (_BITS2 - 1)) != 0; |
- bool isOdd() => (_l & 0x1) == 1; |
- bool isZero() => _h == 0 && _m == 0 && _l == 0; |
- |
- /** |
- * Returns a hash code based on all the bits of this [int64]. |
- */ |
- int hashCode() { |
- int bottom = ((_m & 0x3ff) << _BITS) | _l; |
- int top = (_h << 12) | ((_m >> 10) & 0xfff); |
- return bottom ^ top; |
- } |
- |
- int64 abs() { |
- return this < 0 ? -this : this; |
- } |
- |
- /** |
- * Returns the number of leading zeros in this [int64] as an [int] |
- * between 0 and 64. |
- */ |
- int numberOfLeadingZeros() { |
- int b2 = int32._numberOfLeadingZeros(_h); |
- if (b2 == 32) { |
- int b1 = int32._numberOfLeadingZeros(_m); |
- if (b1 == 32) { |
- return int32._numberOfLeadingZeros(_l) + 32; |
- } else { |
- return b1 + _BITS2 - (32 - _BITS); |
- } |
- } else { |
- return b2 - (32 - _BITS2); |
- } |
- } |
- |
- /** |
- * Returns the number of trailing zeros in this [int64] as an [int] |
- * between 0 and 64. |
- */ |
- int numberOfTrailingZeros() { |
- int zeros = int32._numberOfTrailingZeros(_l); |
- if (zeros < 32) { |
- return zeros; |
- } |
- |
- zeros = int32._numberOfTrailingZeros(_m); |
- if (zeros < 32) { |
- return _BITS + zeros; |
- } |
- |
- zeros = int32._numberOfTrailingZeros(_h); |
- if (zeros < 32) { |
- return _BITS01 + zeros; |
- } |
- // All zeros |
- return 64; |
- } |
- |
- List<int> toBytes() { |
- List<int> result = new List<int>(8); |
- result[0] = _l & 0xff; |
- result[1] = (_l >> 8) & 0xff; |
- result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f); |
- result[3] = (_m >> 2) & 0xff; |
- result[4] = (_m >> 10) & 0xff; |
- result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf); |
- result[6] = (_h >> 4) & 0xff; |
- result[7] = (_h >> 12) & 0xff; |
- return result; |
- } |
- |
- int toInt() { |
- int l = _l; |
- int m = _m; |
- int h = _h; |
- bool negative = false; |
- if ((_h & _SIGN_BIT_VALUE) != 0) { |
- l = ~_l & _MASK; |
- m = ~_m & _MASK; |
- h = ~_h & _MASK_2; |
- negative = true; |
- } |
- |
- int result; |
- if (_haveBigInts) { |
- result = (h << _BITS01) | (m << _BITS) | l; |
- } else { |
- result = (h * 17592186044416) + (m * 4194304) + l; |
- } |
- return negative ? -result - 1 : result; |
- } |
- |
- /** |
- * Returns an [int32] containing the low 32 bits of this [int64]. |
- */ |
- int32 toInt32() { |
- return new int32.fromInt(((_m & 0x3ff) << _BITS) | _l); |
- } |
- |
- /** |
- * Returns [this]. |
- */ |
- int64 toInt64() => this; |
- |
- /** |
- * Returns the value of this [int64] as a decimal [String]. |
- */ |
- // TODO(rice) - Make this faster by converting several digits at once. |
- String toString() { |
- int64 a = this; |
- if (a.isZero()) { |
- return "0"; |
- } |
- if (a.isMinValue()) { |
- return "-9223372036854775808"; |
- } |
- |
- String result = ""; |
- bool negative = false; |
- if (a.isNegative()) { |
- negative = true; |
- a = -a; |
- } |
- |
- int64 ten = new int64._bits(10, 0, 0); |
- while (!a.isZero()) { |
- a = _divMod(a, ten, true); |
- result = "${_remainder._l}$result"; |
- } |
- if (negative) { |
- result = "-$result"; |
- } |
- return result; |
- } |
- |
- // TODO(rice) - Make this faster by avoiding arithmetic. |
- String toHexString() { |
- int64 x = new int64._copy(this); |
- if (isZero()) { |
- return "0"; |
- } |
- String hexStr = ""; |
- int64 digit_f = new int64.fromInt(0xf); |
- while (!x.isZero()) { |
- int digit = x._l & 0xf; |
- hexStr = "${_hexDigit(digit)}$hexStr"; |
- x = x.shiftRightUnsigned(4); |
- } |
- return hexStr; |
- } |
- |
- String toRadixString(int radix) { |
- if ((radix <= 1) || (radix > 16)) { |
- throw "Bad radix: $radix"; |
- } |
- int64 a = this; |
- if (a.isZero()) { |
- return "0"; |
- } |
- if (a.isMinValue()) { |
- return _minValues[radix]; |
- } |
- |
- String result = ""; |
- bool negative = false; |
- if (a.isNegative()) { |
- negative = true; |
- a = -a; |
- } |
- |
- int64 r = new int64._bits(radix, 0, 0); |
- while (!a.isZero()) { |
- a = _divMod(a, r, true); |
- result = "${_hexDigit(_remainder._l)}$result"; |
- } |
- return negative ? "-$result" : result; |
- } |
- |
- String toDebugString() { |
- return "int64[_l=$_l, _m=$_m, _h=$_h]"; |
- } |
- |
- /** |
- * Constructs an [int64] with a given bitwise representation. No validation |
- * is performed. |
- */ |
- int64._bits(int this._l, int this._m, int this._h); |
- |
- /** |
- * Constructs an [int64] with the same value as an existing [int64]. |
- */ |
- int64._copy(int64 other) { |
- _l = other._l; |
- _m = other._m; |
- _h = other._h; |
- } |
- |
- // Determine whether the platform supports ints greater than 2^53 |
- // without loss of precision. |
- static bool _haveBigIntsCached = null; |
- |
- static bool get _haveBigInts() { |
- if (_haveBigIntsCached == null) { |
- var x = 9007199254740992; |
- // Defeat compile-time constant folding. |
- if (2 + 2 != 4) { |
- x = 0; |
- } |
- var y = x + 1; |
- var same = y == x; |
- _haveBigIntsCached = !same; |
- } |
- return _haveBigIntsCached; |
- } |
- |
- String _hexDigit(int digit) => "0123456789ABCDEF"[digit]; |
- |
- // Implementation of '~/' and '%'. |
- |
- // Note: mutates [this]. |
- void _negate() { |
- int neg0 = (~_l + 1) & _MASK; |
- int neg1 = (~_m + (neg0 == 0 ? 1 : 0)) & _MASK; |
- int neg2 = (~_h + ((neg0 == 0 && neg1 == 0) ? 1 : 0)) & _MASK_2; |
- |
- _l = neg0; |
- _m = neg1; |
- _h = neg2; |
- } |
- |
- // Note: mutates [this]. |
- void _setBit(int bit) { |
- if (bit < _BITS) { |
- _l |= 0x1 << bit; |
- } else if (bit < _BITS01) { |
- _m |= 0x1 << (bit - _BITS); |
- } else { |
- _h |= 0x1 << (bit - _BITS01); |
- } |
- } |
- |
- // Note: mutates [this]. |
- void _toShru1() { |
- int a2 = _h; |
- int a1 = _m; |
- int a0 = _l; |
- |
- _h = a2 >> 1; |
- _m = (a1 >> 1) | ((a2 & 0x1) << (_BITS - 1)); |
- _l = (a0 >> 1) | ((a1 & 0x1) << (_BITS - 1)); |
- } |
- |
- // Work around dart2js bugs with negative arguments to '>>' operator. |
- static int _shiftRight(int x, int n) { |
- if (x >= 0) { |
- return x >> n; |
- } else { |
- int shifted = x >> n; |
- if (shifted >= 0x80000000) { |
- shifted -= 4294967296; |
- } |
- return shifted; |
- } |
- } |
- |
- /** |
- * Attempt to subtract b from a if a >= b: |
- * |
- * if (a >= b) { |
- * a -= b; |
- * return true; |
- * } else { |
- * return false; |
- * } |
- */ |
- // Note: mutates [a]. |
- static bool _trialSubtract(int64 a, int64 b) { |
- // Early exit. |
- int sum2 = a._h - b._h; |
- if (sum2 < 0) { |
- return false; |
- } |
- |
- int sum0 = a._l - b._l; |
- int sum1 = a._m - b._m + _shiftRight(sum0, _BITS); |
- sum2 += _shiftRight(sum1, _BITS); |
- |
- if (sum2 < 0) { |
- return false; |
- } |
- |
- a._l = sum0 & _MASK; |
- a._m = sum1 & _MASK; |
- a._h = sum2 & _MASK_2; |
- |
- return true; |
- } |
- |
- // Note: mutates [a] via _trialSubtract. |
- static int64 _divModHelper(int64 a, int64 b, |
- bool negative, bool aIsNegative, bool aIsMinValue, |
- bool computeRemainder) { |
- // Align the leading one bits of a and b by shifting b left. |
- int shift = b.numberOfLeadingZeros() - a.numberOfLeadingZeros(); |
- int64 bshift = b << shift; |
- |
- // Quotient must be a new instance since we mutate it. |
- int64 quotient = new int64(); |
- while (shift >= 0) { |
- bool gte = _trialSubtract(a, bshift); |
- if (gte) { |
- quotient._setBit(shift); |
- if (a.isZero()) { |
- break; |
- } |
- } |
- |
- bshift._toShru1(); |
- shift--; |
- } |
- |
- if (negative) { |
- quotient._negate(); |
- } |
- |
- if (computeRemainder) { |
- if (aIsNegative) { |
- _remainder = -a; |
- if (aIsMinValue) { |
- _remainder = _remainder - ONE; |
- } |
- } else { |
- _remainder = a; |
- } |
- } |
- |
- return quotient; |
- } |
- |
- int64 _divModByMinValue(bool computeRemainder) { |
- // MIN_VALUE / MIN_VALUE == 1, remainder = 0 |
- // (x != MIN_VALUE) / MIN_VALUE == 0, remainder == x |
- if (isMinValue()) { |
- if (computeRemainder) { |
- _remainder = ZERO; |
- } |
- return ONE; |
- } |
- if (computeRemainder) { |
- _remainder = this; |
- } |
- return ZERO; |
- } |
- |
- /** |
- * this &= ((1L << bits) - 1) |
- */ |
- // Note: mutates [this]. |
- int64 _maskRight(int bits) { |
- int b0, b1, b2; |
- if (bits <= _BITS) { |
- b0 = _l & ((1 << bits) - 1); |
- b1 = b2 = 0; |
- } else if (bits <= _BITS01) { |
- b0 = _l; |
- b1 = _m & ((1 << (bits - _BITS)) - 1); |
- b2 = 0; |
- } else { |
- b0 = _l; |
- b1 = _m; |
- b2 = _h & ((1 << (bits - _BITS01)) - 1); |
- } |
- |
- _l = b0; |
- _m = b1; |
- _h = b2; |
- } |
- |
- int64 _divModByShift(int64 a, int bpower, bool negative, bool aIsCopy, |
- bool aIsNegative, bool computeRemainder) { |
- int64 c = a >> bpower; |
- if (negative) { |
- c._negate(); |
- } |
- |
- if (computeRemainder) { |
- if (!aIsCopy) { |
- a = new int64._copy(a); |
- } |
- a._maskRight(bpower); |
- if (aIsNegative) { |
- a._negate(); |
- } |
- _remainder = a; |
- } |
- return c; |
- } |
- |
- /** |
- * Return the exact log base 2 of this, or -1 if this is not a power of two. |
- */ |
- int _powerOfTwo() { |
- // Power of two or 0. |
- int l = _l; |
- if ((l & (l - 1)) != 0) { |
- return -1; |
- } |
- int m = _m; |
- if ((m & (m - 1)) != 0) { |
- return -1; |
- } |
- int h = _h; |
- if ((h & (h - 1)) != 0) { |
- return -1; |
- } |
- if (h == 0 && m == 0 && l == 0) { |
- return -1; |
- } |
- if (h == 0 && m == 0 && l != 0) { |
- return int32._numberOfTrailingZeros(l); |
- } |
- if (h == 0 && m != 0 && l == 0) { |
- return int32._numberOfTrailingZeros(m) + _BITS; |
- } |
- if (h != 0 && m == 0 && l == 0) { |
- return int32._numberOfTrailingZeros(h) + _BITS01; |
- } |
- |
- return -1; |
- } |
- |
- int64 _divMod(int64 a, int64 b, bool computeRemainder) { |
- if (b.isZero()) { |
- throw new IntegerDivisionByZeroException(); |
- } |
- if (a.isZero()) { |
- if (computeRemainder) { |
- _remainder = ZERO; |
- } |
- return ZERO; |
- } |
- // MIN_VALUE / MIN_VALUE = 1, anything other a / MIN_VALUE is 0. |
- if (b.isMinValue()) { |
- return a._divModByMinValue(computeRemainder); |
- } |
- // Normalize b to abs(b), keeping track of the parity in 'negative'. |
- // We can do this because we have already ensured that b != MIN_VALUE. |
- bool negative = false; |
- if (b.isNegative()) { |
- b = -b; |
- negative = !negative; |
- } |
- // If b == 2^n, bpower will be n, otherwise it will be -1. |
- int bpower = b._powerOfTwo(); |
- |
- // True if the original value of a is negative. |
- bool aIsNegative = false; |
- // True if the original value of a is int64.MIN_VALUE. |
- bool aIsMinValue = false; |
- |
- /* |
- * Normalize a to a positive value, keeping track of the sign change in |
- * 'negative' (which tracks the sign of both a and b and is used to |
- * determine the sign of the quotient) and 'aIsNegative' (which is used to |
- * determine the sign of the remainder). |
- * |
- * For all values of a except MIN_VALUE, we can just negate a and modify |
- * negative and aIsNegative appropriately. When a == MIN_VALUE, negation is |
- * not possible without overflowing 64 bits, so instead of computing |
- * abs(MIN_VALUE) / abs(b) we compute (abs(MIN_VALUE) - 1) / abs(b). The |
- * only circumstance under which these quotients differ is when b is a power |
- * of two, which will divide abs(MIN_VALUE) == 2^64 exactly. In this case, |
- * we can get the proper result by shifting MIN_VALUE in unsigned fashion. |
- * |
- * We make a single copy of a before the first operation that needs to |
- * modify its value. |
- */ |
- bool aIsCopy = false; |
- if (a.isMinValue()) { |
- aIsMinValue = true; |
- aIsNegative = true; |
- // If b is not a power of two, treat -a as MAX_VALUE (instead of the |
- // actual value (MAX_VALUE + 1)). |
- if (bpower == -1) { |
- a = new int64._copy(MAX_VALUE); |
- aIsCopy = true; |
- negative = !negative; |
- } else { |
- // Signed shift of MIN_VALUE produces the right answer. |
- int64 c = a >> bpower; |
- if (negative) { |
- c._negate(); |
- } |
- if (computeRemainder) { |
- _remainder = ZERO; |
- } |
- return c; |
- } |
- } else if (a.isNegative()) { |
- aIsNegative = true; |
- a = -a; |
- aIsCopy = true; |
- negative = !negative; |
- } |
- |
- // Now both a and b are non-negative. |
- // If b is a power of two, just shift. |
- if (bpower != -1) { |
- return _divModByShift(a, bpower, negative, aIsCopy, aIsNegative, |
- computeRemainder); |
- } |
- |
- // If a < b, the quotient is 0 and the remainder is a. |
- if (a < b) { |
- if (computeRemainder) { |
- if (aIsNegative) { |
- _remainder = -a; |
- } else { |
- _remainder = aIsCopy ? a : new int64._copy(a); |
- } |
- } |
- return ZERO; |
- } |
- |
- // Generate the quotient using bit-at-a-time long division. |
- return _divModHelper(aIsCopy ? a : new int64._copy(a), b, negative, |
- aIsNegative, aIsMinValue, computeRemainder); |
- } |
-} |