Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(375)

Unified Diff: lib/fixnum/int64.dart

Issue 10854162: Move fixnum to from lib/ to pkg/ . Once pub.dartlang.org (Closed) Base URL: http://dart.googlecode.com/svn/branches/bleeding_edge/dart/
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: lib/fixnum/int64.dart
===================================================================
--- lib/fixnum/int64.dart (revision 10735)
+++ lib/fixnum/int64.dart (working copy)
@@ -1,1095 +0,0 @@
-// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
-// for details. All rights reserved. Use of this source code is governed by a
-// BSD-style license that can be found in the LICENSE file.
-
-/**
- * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1].
- * Arithmetic operations may overflow in order to maintain this range.
- */
-class int64 implements intx {
-
- // A 64-bit integer is represented internally as three non-negative
- // integers, storing the 22 low, 22 middle, and 20 high bits of the
- // 64-bit value. _l (low) and _m (middle) are in the range
- // [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1].
- int _l, _m, _h;
-
- // Note: instances of int64 are immutable outside of this library,
- // therefore we may return a reference to an existing instance.
- // We take care to perform mutation only on internally-generated
- // instances before they are exposed to external code.
-
- // Note: several functions require _BITS == 22 -- do not change this value.
- static final int _BITS = 22;
- static final int _BITS01 = 44; // 2 * _BITS
- static final int _BITS2 = 20; // 64 - _BITS01
- static final int _MASK = 4194303; // (1 << _BITS) - 1
- static final int _MASK_2 = 1048575; // (1 << _BITS2) - 1
- static final int _SIGN_BIT = 19; // _BITS2 - 1
- static final int _SIGN_BIT_VALUE = 524288; // 1 << _SIGN_BIT
-
- // Cached constants
- static int64 _MAX_VALUE;
- static int64 _MIN_VALUE;
- static int64 _ZERO;
- static int64 _ONE;
- static int64 _TWO;
-
- // Precompute the radix strings for MIN_VALUE to avoid the problem
- // of overflow of -MIN_VALUE.
- static List<String> _minValues = const <String>[
- null, null,
- "-1000000000000000000000000000000000000000000000000000000000000000", // 2
- "-2021110011022210012102010021220101220222", // base 3
- "-20000000000000000000000000000000", // base 4
- "-1104332401304422434310311213", // base 5
- "-1540241003031030222122212", // base 6
- "-22341010611245052052301", // base 7
- "-1000000000000000000000", // base 8
- "-67404283172107811828", // base 9
- "-9223372036854775808", // base 10
- "-1728002635214590698", // base 11
- "-41A792678515120368", // base 12
- "-10B269549075433C38", // base 13
- "-4340724C6C71DC7A8", // base 14
- "-160E2AD3246366808", // base 15
- "-8000000000000000" // base 16
- ];
-
- // The remainder of the last divide operation.
- static int64 _remainder;
-
- /**
- * The maximum positive value attainable by an [int64], namely
- * 9,223,372,036,854,775,807.
- */
- static int64 get MAX_VALUE() {
- if (_MAX_VALUE == null) {
- _MAX_VALUE = new int64._bits(_MASK, _MASK, _MASK_2 >> 1);
- }
- return _MAX_VALUE;
- }
-
- /**
- * The minimum positive value attainable by an [int64], namely
- * -9,223,372,036,854,775,808.
- */
- static int64 get MIN_VALUE() {
- if (_MIN_VALUE == null) {
- _MIN_VALUE = new int64._bits(0, 0, _SIGN_BIT_VALUE);
- }
- return _MIN_VALUE;
- }
-
- /**
- * An [int64] constant equal to 0.
- */
- static int64 get ZERO() {
- if (_ZERO == null) {
- _ZERO = new int64();
- }
- return _ZERO;
- }
-
- /**
- * An [int64] constant equal to 1.
- */
- static int64 get ONE() {
- if (_ONE == null) {
- _ONE = new int64._bits(1, 0, 0);
- }
- return _ONE;
- }
-
- /**
- * An [int64] constant equal to 2.
- */
- static int64 get TWO() {
- if (_TWO == null) {
- _TWO = new int64._bits(2, 0, 0);
- }
- return _TWO;
- }
-
- /**
- * Parses a [String] in a given [radix] between 2 and 16 and returns an
- * [int64].
- */
- // TODO(rice) - make this faster by converting several digits at once.
- static int64 parseRadix(String s, int radix) {
- if ((radix <= 1) || (radix > 16)) {
- throw "Bad radix: $radix";
- }
- int64 x = ZERO;
- int i = 0;
- bool negative = false;
- if (s[0] == '-') {
- negative = true;
- i++;
- }
- for (; i < s.length; i++) {
- int c = s.charCodeAt(i);
- int digit = int32._decodeHex(c);
- if (digit < 0 || digit >= radix) {
- throw new Exception("Non-radix char code: $c");
- }
- x = (x * radix) + digit;
- }
- return negative ? -x : x;
- }
-
- /**
- * Parses a decimal [String] and returns an [int64].
- */
- static int64 parseInt(String s) => parseRadix(s, 10);
-
- /**
- * Parses a hexadecimal [String] and returns an [int64].
- */
- static int64 parseHex(String s) => parseRadix(s, 16);
-
- //
- // Public constructors
- //
-
- /**
- * Constructs an [int64] equal to 0.
- */
- int64() : _l = 0, _m = 0, _h = 0;
-
- /**
- * Constructs an [int64] with a given [int] value.
- */
- int64.fromInt(int value) {
- bool negative = false;
- if (value < 0) {
- negative = true;
- value = -value - 1;
- }
- if (_haveBigInts) {
- _l = value & _MASK;
- _m = (value >> _BITS) & _MASK;
- _h = (value >> _BITS01) & _MASK_2;
- } else {
- // Avoid using bitwise operations that coerce their input to 32 bits.
- _h = value ~/ 17592186044416; // 2^44
- value -= _h * 17592186044416;
- _m = value ~/ 4194304; // 2^22
- value -= _m * 4194304;
- _l = value;
- }
-
- if (negative) {
- _l = ~_l & _MASK;
- _m = ~_m & _MASK;
- _h = ~_h & _MASK_2;
- }
- }
-
- factory int64.fromBytes(List<int> bytes) {
- int top = bytes[7] & 0xff;
- top <<= 8;
- top |= bytes[6] & 0xff;
- top <<= 8;
- top |= bytes[5] & 0xff;
- top <<= 8;
- top |= bytes[4] & 0xff;
-
- int bottom = bytes[3] & 0xff;
- bottom <<= 8;
- bottom |= bytes[2] & 0xff;
- bottom <<= 8;
- bottom |= bytes[1] & 0xff;
- bottom <<= 8;
- bottom |= bytes[0] & 0xff;
-
- return new int64.fromInts(top, bottom);
- }
-
- factory int64.fromBytesBigEndian(List<int> bytes) {
- int top = bytes[0] & 0xff;
- top <<= 8;
- top |= bytes[1] & 0xff;
- top <<= 8;
- top |= bytes[2] & 0xff;
- top <<= 8;
- top |= bytes[3] & 0xff;
-
- int bottom = bytes[4] & 0xff;
- bottom <<= 8;
- bottom |= bytes[5] & 0xff;
- bottom <<= 8;
- bottom |= bytes[6] & 0xff;
- bottom <<= 8;
- bottom |= bytes[7] & 0xff;
-
- return new int64.fromInts(top, bottom);
- }
-
- /**
- * Constructs an [int64] from a pair of 32-bit integers having the value
- * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):].
- */
- int64.fromInts(int top, int bottom) {
- top &= 0xffffffff;
- bottom &= 0xffffffff;
- _l = bottom & _MASK;
- _m = ((top & 0xfff) << 10) | ((bottom >> _BITS) & 0x3ff);
- _h = (top >> 12) & _MASK_2;
- }
-
- int64 _promote(other) {
- if (other == null) {
- throw new NullPointerException();
- } else if (other is intx) {
- other = other.toInt64();
- } else if (other is int) {
- other = new int64.fromInt(other);
- }
- if (other is !int64) {
- throw new Exception("Can't promote $other to int64");
- }
- return other;
- }
-
- int64 operator +(other) {
- int64 o = _promote(other);
- int sum0 = _l + o._l;
- int sum1 = _m + o._m + _shiftRight(sum0, _BITS);
- int sum2 = _h + o._h + _shiftRight(sum1, _BITS);
-
- int64 result = new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2);
- return result;
- }
-
- int64 operator -(other) {
- int64 o = _promote(other);
-
- int sum0 = _l - o._l;
- int sum1 = _m - o._m + _shiftRight(sum0, _BITS);
- int sum2 = _h - o._h + _shiftRight(sum1, _BITS);
-
- int64 result = new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2);
- return result;
- }
-
- int64 operator negate() {
- // Like 0 - this.
- int sum0 = -_l;
- int sum1 = -_m + _shiftRight(sum0, _BITS);
- int sum2 = -_h + _shiftRight(sum1, _BITS);
-
- return new int64._bits(sum0 & _MASK, sum1 & _MASK, sum2 & _MASK_2);
- }
-
- int64 operator *(other) {
- int64 o = _promote(other);
- // Grab 13-bit chunks.
- int a0 = _l & 0x1fff;
- int a1 = (_l >> 13) | ((_m & 0xf) << 9);
- int a2 = (_m >> 4) & 0x1fff;
- int a3 = (_m >> 17) | ((_h & 0xff) << 5);
- int a4 = (_h & 0xfff00) >> 8;
-
- int b0 = o._l & 0x1fff;
- int b1 = (o._l >> 13) | ((o._m & 0xf) << 9);
- int b2 = (o._m >> 4) & 0x1fff;
- int b3 = (o._m >> 17) | ((o._h & 0xff) << 5);
- int b4 = (o._h & 0xfff00) >> 8;
-
- // Compute partial products.
- // Optimization: if b is small, avoid multiplying by parts that are 0.
- int p0 = a0 * b0; // << 0
- int p1 = a1 * b0; // << 13
- int p2 = a2 * b0; // << 26
- int p3 = a3 * b0; // << 39
- int p4 = a4 * b0; // << 52
-
- if (b1 != 0) {
- p1 += a0 * b1;
- p2 += a1 * b1;
- p3 += a2 * b1;
- p4 += a3 * b1;
- }
- if (b2 != 0) {
- p2 += a0 * b2;
- p3 += a1 * b2;
- p4 += a2 * b2;
- }
- if (b3 != 0) {
- p3 += a0 * b3;
- p4 += a1 * b3;
- }
- if (b4 != 0) {
- p4 += a0 * b4;
- }
-
- // Accumulate into 22-bit chunks:
- // .........................................c10|...................c00|
- // |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0
- // |....................|......................|......................|
- // |....................|...................c11|......c01.............|
- // |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1
- // |....................|......................|......................|
- // |.................c22|...............c12....|......................|
- // |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2
- // |....................|......................|......................|
- // |.................c23|..c13.................|......................|
- // |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3
- // |....................|......................|......................|
- // |.........c24........|......................|......................|
- // |xxxxxxxxxxxx........|......................|......................| p4
-
- int c00 = p0 & 0x3fffff;
- int c01 = (p1 & 0x1ff) << 13;
- int c0 = c00 + c01;
-
- int c10 = p0 >> 22;
- int c11 = p1 >> 9;
- int c12 = (p2 & 0x3ffff) << 4;
- int c13 = (p3 & 0x1f) << 17;
- int c1 = c10 + c11 + c12 + c13;
-
- int c22 = p2 >> 18;
- int c23 = p3 >> 5;
- int c24 = (p4 & 0xfff) << 8;
- int c2 = c22 + c23 + c24;
-
- // Propagate high bits from c0 -> c1, c1 -> c2.
- c1 += c0 >> _BITS;
- c0 &= _MASK;
- c2 += c1 >> _BITS;
- c1 &= _MASK;
- c2 &= _MASK_2;
-
- return new int64._bits(c0, c1, c2);
- }
-
- int64 operator %(other) {
- if (other.isZero()) {
- throw new IntegerDivisionByZeroException();
- }
- if (this.isZero()) {
- return ZERO;
- }
- int64 o = _promote(other).abs();
- _divMod(this, o, true);
- return _remainder < 0 ? (_remainder + o) : _remainder;
- }
-
- int64 operator ~/(other) => _divMod(this, _promote(other), false);
-
- // int64 remainder(other) => this - (this ~/ other) * other;
- int64 remainder(other) {
- if (other.isZero()) {
- throw new IntegerDivisionByZeroException();
- }
- int64 o = _promote(other).abs();
- _divMod(this, o, true);
- return _remainder;
- }
-
- int64 operator &(other) {
- int64 o = _promote(other);
- int a0 = _l & o._l;
- int a1 = _m & o._m;
- int a2 = _h & o._h;
- return new int64._bits(a0, a1, a2);
- }
-
- int64 operator |(other) {
- int64 o = _promote(other);
- int a0 = _l | o._l;
- int a1 = _m | o._m;
- int a2 = _h | o._h;
- return new int64._bits(a0, a1, a2);
- }
-
- int64 operator ^(other) {
- int64 o = _promote(other);
- int a0 = _l ^ o._l;
- int a1 = _m ^ o._m;
- int a2 = _h ^ o._h;
- return new int64._bits(a0, a1, a2);
- }
-
- int64 operator ~() {
- var result = new int64._bits((~_l) & _MASK, (~_m) & _MASK, (~_h) & _MASK_2);
- return result;
- }
-
- int64 operator <<(int n) {
- if (n < 0) {
- throw new IllegalArgumentException("$n");
- }
- n &= 63;
-
- int res0, res1, res2;
- if (n < _BITS) {
- res0 = _l << n;
- res1 = (_m << n) | (_l >> (_BITS - n));
- res2 = (_h << n) | (_m >> (_BITS - n));
- } else if (n < _BITS01) {
- res0 = 0;
- res1 = _l << (n - _BITS);
- res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n));
- } else {
- res0 = 0;
- res1 = 0;
- res2 = _l << (n - _BITS01);
- }
-
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2);
- }
-
- int64 operator >>(int n) {
- if (n < 0) {
- throw new IllegalArgumentException("$n");
- }
- n &= 63;
-
- int res0, res1, res2;
-
- // Sign extend h(a).
- int a2 = _h;
- bool negative = (a2 & _SIGN_BIT_VALUE) != 0;
- if (negative) {
- a2 += 0x3 << _BITS2; // add extra one bits on the left
- }
-
- if (n < _BITS) {
- res2 = _shiftRight(a2, n);
- if (negative) {
- res2 |= _MASK_2 & ~(_MASK_2 >> n);
- }
- res1 = _shiftRight(_m, n) | (a2 << (_BITS - n));
- res0 = _shiftRight(_l, n) | (_m << (_BITS - n));
- } else if (n < _BITS01) {
- res2 = negative ? _MASK_2 : 0;
- res1 = _shiftRight(a2, n - _BITS);
- if (negative) {
- res1 |= _MASK & ~(_MASK >> (n - _BITS));
- }
- res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n));
- } else {
- res2 = negative ? _MASK_2 : 0;
- res1 = negative ? _MASK : 0;
- res0 = _shiftRight(a2, n - _BITS01);
- if (negative) {
- res0 |= _MASK & ~(_MASK >> (n - _BITS01));
- }
- }
-
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2);
- }
-
- int64 shiftRightUnsigned(int n) {
- if (n < 0) {
- throw new IllegalArgumentException("$n");
- }
- n &= 63;
-
- int res0, res1, res2;
- int a2 = _h & _MASK_2; // Ensure a2 is positive.
- if (n < _BITS) {
- res2 = a2 >> n;
- res1 = (_m >> n) | (a2 << (_BITS - n));
- res0 = (_l >> n) | (_m << (_BITS - n));
- } else if (n < _BITS01) {
- res2 = 0;
- res1 = a2 >> (n - _BITS);
- res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n));
- } else {
- res2 = 0;
- res1 = 0;
- res0 = a2 >> (n - _BITS01);
- }
-
- return new int64._bits(res0 & _MASK, res1 & _MASK, res2 & _MASK_2);
- }
-
- /**
- * Returns [true] if this [int64] has the same numeric value as the
- * given object. The argument may be an [int] or an [intx].
- */
- bool operator ==(other) {
- if (other == null) {
- return false;
- }
- int64 o = _promote(other);
- return _l == o._l && _m == o._m && _h == o._h;
- }
-
- int compareTo(Comparable other) {
- int64 o = _promote(other);
- int signa = _h >> (_BITS2 - 1);
- int signb = o._h >> (_BITS2 - 1);
- if (signa != signb) {
- return signa == 0 ? 1 : -1;
- }
- if (_h > o._h) {
- return 1;
- } else if (_h < o._h) {
- return -1;
- }
- if (_m > o._m) {
- return 1;
- } else if (_m < o._m) {
- return -1;
- }
- if (_l > o._l) {
- return 1;
- } else if (_l < o._l) {
- return -1;
- }
- return 0;
- }
-
- bool operator <(other) {
- return this.compareTo(other) < 0;
- }
-
- bool operator <=(other) {
- return this.compareTo(other) <= 0;
- }
-
- bool operator >(other) {
- return this.compareTo(other) > 0;
- }
-
- bool operator >=(other) {
- return this.compareTo(other) >= 0;
- }
-
- bool isEven() => (_l & 0x1) == 0;
- bool isMaxValue() => (_h == _MASK_2 >> 1) && _m == _MASK && _l == _MASK;
- bool isMinValue() => _h == _SIGN_BIT_VALUE && _m == 0 && _l == 0;
- bool isNegative() => (_h >> (_BITS2 - 1)) != 0;
- bool isOdd() => (_l & 0x1) == 1;
- bool isZero() => _h == 0 && _m == 0 && _l == 0;
-
- /**
- * Returns a hash code based on all the bits of this [int64].
- */
- int hashCode() {
- int bottom = ((_m & 0x3ff) << _BITS) | _l;
- int top = (_h << 12) | ((_m >> 10) & 0xfff);
- return bottom ^ top;
- }
-
- int64 abs() {
- return this < 0 ? -this : this;
- }
-
- /**
- * Returns the number of leading zeros in this [int64] as an [int]
- * between 0 and 64.
- */
- int numberOfLeadingZeros() {
- int b2 = int32._numberOfLeadingZeros(_h);
- if (b2 == 32) {
- int b1 = int32._numberOfLeadingZeros(_m);
- if (b1 == 32) {
- return int32._numberOfLeadingZeros(_l) + 32;
- } else {
- return b1 + _BITS2 - (32 - _BITS);
- }
- } else {
- return b2 - (32 - _BITS2);
- }
- }
-
- /**
- * Returns the number of trailing zeros in this [int64] as an [int]
- * between 0 and 64.
- */
- int numberOfTrailingZeros() {
- int zeros = int32._numberOfTrailingZeros(_l);
- if (zeros < 32) {
- return zeros;
- }
-
- zeros = int32._numberOfTrailingZeros(_m);
- if (zeros < 32) {
- return _BITS + zeros;
- }
-
- zeros = int32._numberOfTrailingZeros(_h);
- if (zeros < 32) {
- return _BITS01 + zeros;
- }
- // All zeros
- return 64;
- }
-
- List<int> toBytes() {
- List<int> result = new List<int>(8);
- result[0] = _l & 0xff;
- result[1] = (_l >> 8) & 0xff;
- result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f);
- result[3] = (_m >> 2) & 0xff;
- result[4] = (_m >> 10) & 0xff;
- result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf);
- result[6] = (_h >> 4) & 0xff;
- result[7] = (_h >> 12) & 0xff;
- return result;
- }
-
- int toInt() {
- int l = _l;
- int m = _m;
- int h = _h;
- bool negative = false;
- if ((_h & _SIGN_BIT_VALUE) != 0) {
- l = ~_l & _MASK;
- m = ~_m & _MASK;
- h = ~_h & _MASK_2;
- negative = true;
- }
-
- int result;
- if (_haveBigInts) {
- result = (h << _BITS01) | (m << _BITS) | l;
- } else {
- result = (h * 17592186044416) + (m * 4194304) + l;
- }
- return negative ? -result - 1 : result;
- }
-
- /**
- * Returns an [int32] containing the low 32 bits of this [int64].
- */
- int32 toInt32() {
- return new int32.fromInt(((_m & 0x3ff) << _BITS) | _l);
- }
-
- /**
- * Returns [this].
- */
- int64 toInt64() => this;
-
- /**
- * Returns the value of this [int64] as a decimal [String].
- */
- // TODO(rice) - Make this faster by converting several digits at once.
- String toString() {
- int64 a = this;
- if (a.isZero()) {
- return "0";
- }
- if (a.isMinValue()) {
- return "-9223372036854775808";
- }
-
- String result = "";
- bool negative = false;
- if (a.isNegative()) {
- negative = true;
- a = -a;
- }
-
- int64 ten = new int64._bits(10, 0, 0);
- while (!a.isZero()) {
- a = _divMod(a, ten, true);
- result = "${_remainder._l}$result";
- }
- if (negative) {
- result = "-$result";
- }
- return result;
- }
-
- // TODO(rice) - Make this faster by avoiding arithmetic.
- String toHexString() {
- int64 x = new int64._copy(this);
- if (isZero()) {
- return "0";
- }
- String hexStr = "";
- int64 digit_f = new int64.fromInt(0xf);
- while (!x.isZero()) {
- int digit = x._l & 0xf;
- hexStr = "${_hexDigit(digit)}$hexStr";
- x = x.shiftRightUnsigned(4);
- }
- return hexStr;
- }
-
- String toRadixString(int radix) {
- if ((radix <= 1) || (radix > 16)) {
- throw "Bad radix: $radix";
- }
- int64 a = this;
- if (a.isZero()) {
- return "0";
- }
- if (a.isMinValue()) {
- return _minValues[radix];
- }
-
- String result = "";
- bool negative = false;
- if (a.isNegative()) {
- negative = true;
- a = -a;
- }
-
- int64 r = new int64._bits(radix, 0, 0);
- while (!a.isZero()) {
- a = _divMod(a, r, true);
- result = "${_hexDigit(_remainder._l)}$result";
- }
- return negative ? "-$result" : result;
- }
-
- String toDebugString() {
- return "int64[_l=$_l, _m=$_m, _h=$_h]";
- }
-
- /**
- * Constructs an [int64] with a given bitwise representation. No validation
- * is performed.
- */
- int64._bits(int this._l, int this._m, int this._h);
-
- /**
- * Constructs an [int64] with the same value as an existing [int64].
- */
- int64._copy(int64 other) {
- _l = other._l;
- _m = other._m;
- _h = other._h;
- }
-
- // Determine whether the platform supports ints greater than 2^53
- // without loss of precision.
- static bool _haveBigIntsCached = null;
-
- static bool get _haveBigInts() {
- if (_haveBigIntsCached == null) {
- var x = 9007199254740992;
- // Defeat compile-time constant folding.
- if (2 + 2 != 4) {
- x = 0;
- }
- var y = x + 1;
- var same = y == x;
- _haveBigIntsCached = !same;
- }
- return _haveBigIntsCached;
- }
-
- String _hexDigit(int digit) => "0123456789ABCDEF"[digit];
-
- // Implementation of '~/' and '%'.
-
- // Note: mutates [this].
- void _negate() {
- int neg0 = (~_l + 1) & _MASK;
- int neg1 = (~_m + (neg0 == 0 ? 1 : 0)) & _MASK;
- int neg2 = (~_h + ((neg0 == 0 && neg1 == 0) ? 1 : 0)) & _MASK_2;
-
- _l = neg0;
- _m = neg1;
- _h = neg2;
- }
-
- // Note: mutates [this].
- void _setBit(int bit) {
- if (bit < _BITS) {
- _l |= 0x1 << bit;
- } else if (bit < _BITS01) {
- _m |= 0x1 << (bit - _BITS);
- } else {
- _h |= 0x1 << (bit - _BITS01);
- }
- }
-
- // Note: mutates [this].
- void _toShru1() {
- int a2 = _h;
- int a1 = _m;
- int a0 = _l;
-
- _h = a2 >> 1;
- _m = (a1 >> 1) | ((a2 & 0x1) << (_BITS - 1));
- _l = (a0 >> 1) | ((a1 & 0x1) << (_BITS - 1));
- }
-
- // Work around dart2js bugs with negative arguments to '>>' operator.
- static int _shiftRight(int x, int n) {
- if (x >= 0) {
- return x >> n;
- } else {
- int shifted = x >> n;
- if (shifted >= 0x80000000) {
- shifted -= 4294967296;
- }
- return shifted;
- }
- }
-
- /**
- * Attempt to subtract b from a if a >= b:
- *
- * if (a >= b) {
- * a -= b;
- * return true;
- * } else {
- * return false;
- * }
- */
- // Note: mutates [a].
- static bool _trialSubtract(int64 a, int64 b) {
- // Early exit.
- int sum2 = a._h - b._h;
- if (sum2 < 0) {
- return false;
- }
-
- int sum0 = a._l - b._l;
- int sum1 = a._m - b._m + _shiftRight(sum0, _BITS);
- sum2 += _shiftRight(sum1, _BITS);
-
- if (sum2 < 0) {
- return false;
- }
-
- a._l = sum0 & _MASK;
- a._m = sum1 & _MASK;
- a._h = sum2 & _MASK_2;
-
- return true;
- }
-
- // Note: mutates [a] via _trialSubtract.
- static int64 _divModHelper(int64 a, int64 b,
- bool negative, bool aIsNegative, bool aIsMinValue,
- bool computeRemainder) {
- // Align the leading one bits of a and b by shifting b left.
- int shift = b.numberOfLeadingZeros() - a.numberOfLeadingZeros();
- int64 bshift = b << shift;
-
- // Quotient must be a new instance since we mutate it.
- int64 quotient = new int64();
- while (shift >= 0) {
- bool gte = _trialSubtract(a, bshift);
- if (gte) {
- quotient._setBit(shift);
- if (a.isZero()) {
- break;
- }
- }
-
- bshift._toShru1();
- shift--;
- }
-
- if (negative) {
- quotient._negate();
- }
-
- if (computeRemainder) {
- if (aIsNegative) {
- _remainder = -a;
- if (aIsMinValue) {
- _remainder = _remainder - ONE;
- }
- } else {
- _remainder = a;
- }
- }
-
- return quotient;
- }
-
- int64 _divModByMinValue(bool computeRemainder) {
- // MIN_VALUE / MIN_VALUE == 1, remainder = 0
- // (x != MIN_VALUE) / MIN_VALUE == 0, remainder == x
- if (isMinValue()) {
- if (computeRemainder) {
- _remainder = ZERO;
- }
- return ONE;
- }
- if (computeRemainder) {
- _remainder = this;
- }
- return ZERO;
- }
-
- /**
- * this &= ((1L << bits) - 1)
- */
- // Note: mutates [this].
- int64 _maskRight(int bits) {
- int b0, b1, b2;
- if (bits <= _BITS) {
- b0 = _l & ((1 << bits) - 1);
- b1 = b2 = 0;
- } else if (bits <= _BITS01) {
- b0 = _l;
- b1 = _m & ((1 << (bits - _BITS)) - 1);
- b2 = 0;
- } else {
- b0 = _l;
- b1 = _m;
- b2 = _h & ((1 << (bits - _BITS01)) - 1);
- }
-
- _l = b0;
- _m = b1;
- _h = b2;
- }
-
- int64 _divModByShift(int64 a, int bpower, bool negative, bool aIsCopy,
- bool aIsNegative, bool computeRemainder) {
- int64 c = a >> bpower;
- if (negative) {
- c._negate();
- }
-
- if (computeRemainder) {
- if (!aIsCopy) {
- a = new int64._copy(a);
- }
- a._maskRight(bpower);
- if (aIsNegative) {
- a._negate();
- }
- _remainder = a;
- }
- return c;
- }
-
- /**
- * Return the exact log base 2 of this, or -1 if this is not a power of two.
- */
- int _powerOfTwo() {
- // Power of two or 0.
- int l = _l;
- if ((l & (l - 1)) != 0) {
- return -1;
- }
- int m = _m;
- if ((m & (m - 1)) != 0) {
- return -1;
- }
- int h = _h;
- if ((h & (h - 1)) != 0) {
- return -1;
- }
- if (h == 0 && m == 0 && l == 0) {
- return -1;
- }
- if (h == 0 && m == 0 && l != 0) {
- return int32._numberOfTrailingZeros(l);
- }
- if (h == 0 && m != 0 && l == 0) {
- return int32._numberOfTrailingZeros(m) + _BITS;
- }
- if (h != 0 && m == 0 && l == 0) {
- return int32._numberOfTrailingZeros(h) + _BITS01;
- }
-
- return -1;
- }
-
- int64 _divMod(int64 a, int64 b, bool computeRemainder) {
- if (b.isZero()) {
- throw new IntegerDivisionByZeroException();
- }
- if (a.isZero()) {
- if (computeRemainder) {
- _remainder = ZERO;
- }
- return ZERO;
- }
- // MIN_VALUE / MIN_VALUE = 1, anything other a / MIN_VALUE is 0.
- if (b.isMinValue()) {
- return a._divModByMinValue(computeRemainder);
- }
- // Normalize b to abs(b), keeping track of the parity in 'negative'.
- // We can do this because we have already ensured that b != MIN_VALUE.
- bool negative = false;
- if (b.isNegative()) {
- b = -b;
- negative = !negative;
- }
- // If b == 2^n, bpower will be n, otherwise it will be -1.
- int bpower = b._powerOfTwo();
-
- // True if the original value of a is negative.
- bool aIsNegative = false;
- // True if the original value of a is int64.MIN_VALUE.
- bool aIsMinValue = false;
-
- /*
- * Normalize a to a positive value, keeping track of the sign change in
- * 'negative' (which tracks the sign of both a and b and is used to
- * determine the sign of the quotient) and 'aIsNegative' (which is used to
- * determine the sign of the remainder).
- *
- * For all values of a except MIN_VALUE, we can just negate a and modify
- * negative and aIsNegative appropriately. When a == MIN_VALUE, negation is
- * not possible without overflowing 64 bits, so instead of computing
- * abs(MIN_VALUE) / abs(b) we compute (abs(MIN_VALUE) - 1) / abs(b). The
- * only circumstance under which these quotients differ is when b is a power
- * of two, which will divide abs(MIN_VALUE) == 2^64 exactly. In this case,
- * we can get the proper result by shifting MIN_VALUE in unsigned fashion.
- *
- * We make a single copy of a before the first operation that needs to
- * modify its value.
- */
- bool aIsCopy = false;
- if (a.isMinValue()) {
- aIsMinValue = true;
- aIsNegative = true;
- // If b is not a power of two, treat -a as MAX_VALUE (instead of the
- // actual value (MAX_VALUE + 1)).
- if (bpower == -1) {
- a = new int64._copy(MAX_VALUE);
- aIsCopy = true;
- negative = !negative;
- } else {
- // Signed shift of MIN_VALUE produces the right answer.
- int64 c = a >> bpower;
- if (negative) {
- c._negate();
- }
- if (computeRemainder) {
- _remainder = ZERO;
- }
- return c;
- }
- } else if (a.isNegative()) {
- aIsNegative = true;
- a = -a;
- aIsCopy = true;
- negative = !negative;
- }
-
- // Now both a and b are non-negative.
- // If b is a power of two, just shift.
- if (bpower != -1) {
- return _divModByShift(a, bpower, negative, aIsCopy, aIsNegative,
- computeRemainder);
- }
-
- // If a < b, the quotient is 0 and the remainder is a.
- if (a < b) {
- if (computeRemainder) {
- if (aIsNegative) {
- _remainder = -a;
- } else {
- _remainder = aIsCopy ? a : new int64._copy(a);
- }
- }
- return ZERO;
- }
-
- // Generate the quotient using bit-at-a-time long division.
- return _divModHelper(aIsCopy ? a : new int64._copy(a), b, negative,
- aIsNegative, aIsMinValue, computeRemainder);
- }
-}
« no previous file with comments | « lib/fixnum/int32.dart ('k') | lib/fixnum/intx.dart » ('j') | pkg/fixnum/pubspec.yaml » ('J')

Powered by Google App Engine
This is Rietveld 408576698