Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2411)

Unified Diff: chrome/common/metrics/entropy_provider_unittest.cc

Issue 10830318: Use a different algorithm with the low entropy source for field trials. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: chrome/common/metrics/entropy_provider_unittest.cc
===================================================================
--- chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
+++ chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
@@ -0,0 +1,263 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <limits>
+
+#include "base/basictypes.h"
+#include "base/memory/scoped_ptr.h"
+#include "base/rand_util.h"
+#include "base/string_number_conversions.h"
+#include "chrome/common/metrics/entropy_provider.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+class EntropyProviderTest : public testing::Test {
+ public:
+ // Computes SHA1-based entropy for the given |trial_name| based on
+ // |entropy_source|
+ double GenerateSHA1Entropy(const std::string& entropy_source,
+ const std::string& trial_name) {
+ scoped_ptr<SHA1EntropyProvider> sha1_provider(
+ new SHA1EntropyProvider(entropy_source));
+ return sha1_provider->GetEntropyForTrial(trial_name);
+ }
+
+ // Generates permutation-based entropy for the given |trial_name| based on
+ // |entropy_source| which must be in the range [0, entropy_max).
+ double GeneratePermutedEntropy(uint16 entropy_source,
+ size_t entropy_max,
+ const std::string& trial_name) {
+ scoped_ptr<PermutedEntropyProvider> permuted_provider(
+ new PermutedEntropyProvider(entropy_source, entropy_max));
Ilya Sherman 2012/08/17 07:34:28 nit: Why not just stack-allocate this guy?
Alexei Svitkine (slow) 2012/08/17 14:08:59 Good point. Done.
+ return permuted_provider->GetEntropyForTrial(trial_name);
+ }
+};
+
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id"));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ ASSERT_NE(trials[0]->group(), trials[1]->group());
+ ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ const size_t kMaxEntropySize = (1 << 13);
+ base::FieldTrialList field_trial_list(
+ new PermutedEntropyProvider(1234, kMaxEntropySize));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ ASSERT_NE(trials[0]->group(), trials[1]->group());
+ ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, SHA1Entropy) {
+ double results[] = {
+ GenerateSHA1Entropy("hi", "1"),
+ GenerateSHA1Entropy("there", "1"),
+ };
+ ASSERT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ ASSERT_LE(0.0, results[i]);
+ ASSERT_GT(1.0, results[i]);
+ }
+
+ ASSERT_EQ(GenerateSHA1Entropy("yo", "1"),
+ GenerateSHA1Entropy("yo", "1"));
+ ASSERT_NE(GenerateSHA1Entropy("yo", "something"),
+ GenerateSHA1Entropy("yo", "else"));
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropy) {
+ const size_t kMaxEntropySize = (1 << 13);
+ double results[] = {
+ GeneratePermutedEntropy(1234, kMaxEntropySize, "1"),
+ GeneratePermutedEntropy(4321, kMaxEntropySize, "1"),
+ };
+ ASSERT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ ASSERT_LE(0.0, results[i]);
+ ASSERT_GT(1.0, results[i]);
+ }
+
+ ASSERT_EQ(GeneratePermutedEntropy(1234, kMaxEntropySize, "1"),
+ GeneratePermutedEntropy(1234, kMaxEntropySize, "1"));
+ ASSERT_NE(GeneratePermutedEntropy(1234, kMaxEntropySize, "something"),
+ GeneratePermutedEntropy(1234, kMaxEntropySize, "else"));
+}
+
+TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) {
+ // Choose a random start number but go sequentially from there, so
+ // that each test tries a different range but we never provide uniformly
+ // distributed input data.
+ int current_number = base::RandInt(0, std::numeric_limits<int>::max());
Ilya Sherman 2012/08/17 07:34:28 We should print the seed on failure, so that failu
+
+ // The expected value of a random distribution is the average over all
+ // samples as the number of samples approaches infinity. For a uniform
+ // distribution from [0.0, 1.0) this would be 0.5.
+ //
+ // We do kSamplesBetweenChecks at a time and check if the value has converged
+ // to a narrow interval around 0.5. A non-uniform distribution would likely
+ // converge at something different, or not converge consistently within this
+ // range (i.e. the test would start timing out occasionally).
Ilya Sherman 2012/08/17 07:34:28 Hmm, this sounds like it's just checking that the
Alexei Svitkine (slow) 2012/08/20 16:02:55 I've now replaces this test with one that distribu
+ int kSamplesBetweenChecks = 300;
+ int num_samples = 0;
+ double total_value = 0.0;
+ while (true) {
Ilya Sherman 2012/08/17 07:34:28 Rather than having a while (true) loop, let's figu
+ for (int i = 0; i < kSamplesBetweenChecks; ++i) {
+ total_value += GenerateSHA1Entropy(
+ base::IntToString(current_number++), "salt");
+ num_samples++;
+ }
+
+ double average = total_value / num_samples;
+ double kExpectedMin = 0.48;
+ double kExpectedMax = 0.52;
Ilya Sherman 2012/08/17 07:34:28 This is a pretty big range for the high-entropy so
+
+ if (num_samples > 1000 &&
+ (average < kExpectedMin || average > kExpectedMax)) {
+ // Only printed once we have enough samples that it's very unlikely
+ // things haven't converged.
+ printf("After %d samples, the average was %f, outside the expected\n"
+ "range (%f, %f). We will add more samples and check after every\n"
+ "%d samples. If the average does not converge, something\n"
+ "is broken. If it does converge, the test will pass.\n",
+ num_samples, average,
+ kExpectedMin, kExpectedMax, kSamplesBetweenChecks);
+ } else {
+ // Success.
+ break;
+ }
+ }
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) {
+ // Choose a random start number but go sequentially from there, so
+ // that each test tries a different range but we never provide uniformly
+ // distributed input data.
+ const size_t kMaxEntropySize = (1 << 13);
+ int current_number = base::RandInt(0, kMaxEntropySize - 1);
+
+ // The expected value of a random distribution is the average over all
+ // samples as the number of samples approaches infinity. For a uniform
+ // distribution from [0.0, 1.0) this would be 0.5.
+ //
+ // We do kSamplesBetweenChecks at a time and check if the value has converged
+ // to a narrow interval around 0.5. A non-uniform distribution would likely
+ // converge at something different, or not converge consistently within this
+ // range (i.e. the test would start timing out occasionally).
+ int kSamplesBetweenChecks = 300;
+ int num_samples = 0;
+ double total_value = 0.0;
+ while (true) {
+ for (int i = 0; i < kSamplesBetweenChecks; ++i) {
+ total_value += GeneratePermutedEntropy(current_number++ % kMaxEntropySize,
+ kMaxEntropySize, "salt");
+ num_samples++;
+ }
+
+ double average = total_value / num_samples;
+ double kExpectedMin = 0.48;
+ double kExpectedMax = 0.52;
+
+ if (num_samples > 1000 &&
+ (average < kExpectedMin || average > kExpectedMax)) {
+ // Only printed once we have enough samples that it's very unlikely
+ // things haven't converged.
+ printf("After %d samples, the average was %f, outside the expected\n"
+ "range (%f, %f). We will add more samples and check after every\n"
+ "%d samples. If the average does not converge, something\n"
+ "is broken. If it does converge, the test will pass.\n",
+ num_samples, average,
+ kExpectedMin, kExpectedMax, kSamplesBetweenChecks);
+ } else {
+ // Success.
+ break;
+ }
+ }
+}
+
+TEST_F(EntropyProviderTest, SeededRandGeneratorIsUniform) {
+ // Verifies. that SeededRandGenerator has a uniform distribution.
+ //
+ // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc.
+
+ const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL;
+ const uint32 kExpectedAverage = kTopOfRange / 2ULL;
+ const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
+ const int kMinAttempts = 1000;
+ const int kMaxAttempts = 1000000;
+
+ const std::string trial_names[] = {
+ "TestTrial",
+ "AnotherTestTrial",
+ "NewTabButton",
+ };
+
+ for (size_t i = 0; i < arraysize(trial_names); ++i) {
+ const uint32 seed = internal::HashName(trial_names[i]);
+ internal::SeededRandGenerator rand_generator(seed);
+
+ double cumulative_average = 0.0;
+ int count = 0;
+ while (count < kMaxAttempts) {
+ uint32 value = rand_generator(kTopOfRange);
+ cumulative_average = (count * cumulative_average + value) / (count + 1);
+
+ // Don't quit too quickly for things to start converging, or we may have
+ // a false positive.
+ if (count > kMinAttempts &&
+ kExpectedAverage - kAllowedVariance < cumulative_average &&
+ cumulative_average < kExpectedAverage + kAllowedVariance) {
+ break;
+ }
+
+ ++count;
+ }
+
+ ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
+ kExpectedAverage << ", average ended at " << cumulative_average;
+ }
+}
+

Powered by Google App Engine
This is Rietveld 408576698