| Index: tests/lib/math/math2_test.dart
|
| diff --git a/tests/corelib/math_test.dart b/tests/lib/math/math2_test.dart
|
| similarity index 50%
|
| rename from tests/corelib/math_test.dart
|
| rename to tests/lib/math/math2_test.dart
|
| index a7b8d5bf1f525c7d62900d305ce445345464ddbd..54687b93466f05ae4e390342065b00e2b83e0049 100644
|
| --- a/tests/corelib/math_test.dart
|
| +++ b/tests/lib/math/math2_test.dart
|
| @@ -1,4 +1,4 @@
|
| -// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
|
| +// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
| // for details. All rights reserved. Use of this source code is governed by a
|
| // BSD-style license that can be found in the LICENSE file.
|
|
|
| @@ -8,256 +8,6 @@
|
| #library('math_test');
|
| #import('dart:math', prefix: 'math');
|
|
|
| -class MathTest {
|
| - static void testConstants() {
|
| - // Source for mathematical constants is Wolfram Alpha.
|
| - Expect.equals(2.7182818284590452353602874713526624977572470936999595749669,
|
| - Math.E);
|
| - Expect.equals(2.3025850929940456840179914546843642076011014886287729760333,
|
| - Math.LN10);
|
| - Expect.equals(0.6931471805599453094172321214581765680755001343602552541206,
|
| - Math.LN2);
|
| - Expect.equals(1.4426950408889634073599246810018921374266459541529859341354,
|
| - Math.LOG2E);
|
| - Expect.equals(0.4342944819032518276511289189166050822943970058036665661144,
|
| - Math.LOG10E);
|
| - Expect.equals(3.1415926535897932384626433832795028841971693993751058209749,
|
| - Math.PI);
|
| - Expect.equals(0.7071067811865475244008443621048490392848359376884740365883,
|
| - Math.SQRT1_2);
|
| - Expect.equals(1.4142135623730950488016887242096980785696718753769480731766,
|
| - Math.SQRT2);
|
| - }
|
| -
|
| - static checkClose(double a, double b, EPSILON) {
|
| - Expect.equals(true, a - EPSILON <= b);
|
| - Expect.equals(true, b <= a + EPSILON);
|
| - }
|
| -
|
| - static void testSin() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.sin(0.0), EPSILON);
|
| - checkClose(0.0, Math.sin(Math.PI), EPSILON);
|
| - checkClose(0.0, Math.sin(2.0 * Math.PI), EPSILON);
|
| - checkClose(1.0, Math.sin(Math.PI / 2.0), EPSILON);
|
| - checkClose(-1.0, Math.sin(Math.PI * (3.0 / 2.0)), EPSILON);
|
| - }
|
| -
|
| - static void testCos() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(1.0, Math.cos(0.0), EPSILON);
|
| - checkClose(-1.0, Math.cos(Math.PI), EPSILON);
|
| - checkClose(1.0, Math.cos(2.0 * Math.PI), EPSILON);
|
| - checkClose(0.0, Math.cos(Math.PI / 2.0), EPSILON);
|
| - checkClose(0.0, Math.cos(Math.PI * (3.0 / 2.0)), EPSILON);
|
| - }
|
| -
|
| - static void testTan() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.tan(0.0), EPSILON);
|
| - checkClose(0.0, Math.tan(Math.PI), EPSILON);
|
| - checkClose(0.0, Math.tan(2.0 * Math.PI), EPSILON);
|
| - checkClose(1.0, Math.tan(Math.PI / 4.0), EPSILON);
|
| - }
|
| -
|
| - static void testAsin() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.asin(0.0), EPSILON);
|
| - checkClose(Math.PI / 2.0, Math.asin(1.0), EPSILON);
|
| - checkClose(-Math.PI / 2.0, Math.asin(-1.0), EPSILON);
|
| - }
|
| -
|
| -
|
| - static void testAcos() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.acos(1.0), EPSILON);
|
| - checkClose(Math.PI, Math.acos(-1.0), EPSILON);
|
| - checkClose(Math.PI / 2.0, Math.acos(0.0), EPSILON);
|
| - }
|
| -
|
| - static void testAtan() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.atan(0.0), EPSILON);
|
| - checkClose(Math.PI / 4.0, Math.atan(1.0), EPSILON);
|
| - checkClose(-Math.PI / 4.0, Math.atan(-1.0), EPSILON);
|
| - }
|
| -
|
| - static void testAtan2() {
|
| - // Given the imprecision of PI we can't expect better results than this.
|
| - final double EPSILON = 1e-15;
|
| - checkClose(0.0, Math.atan2(0.0, 5.0), EPSILON);
|
| - checkClose(Math.PI / 4.0, Math.atan2(2.0, 2.0), EPSILON);
|
| - checkClose(3 * Math.PI / 4.0, Math.atan2(0.5, -0.5), EPSILON);
|
| - checkClose(-3 * Math.PI / 4.0, Math.atan2(-2.5, -2.5), EPSILON);
|
| - }
|
| -
|
| - static checkVeryClose(double a, double b) {
|
| - // We find a ulp (unit in the last place) by shifting the original number
|
| - // to the right. This only works if we are not too close to infinity or if
|
| - // we work with denormals.
|
| - // We special case or 0.0, but not for infinity.
|
| - if (a == 0.0) {
|
| - final minimalDouble = 4.9406564584124654e-324;
|
| - Expect.equals(true, b.abs() <= minimalDouble);
|
| - return;
|
| - }
|
| - if (b == 0.0) {
|
| - // No need to look if they are close. Otherwise the check for 'a' above
|
| - // whould have triggered.
|
| - Expect.equals(a, b);
|
| - }
|
| - final double shiftRightBy52 = 2.220446049250313080847263336181640625e-16;
|
| - final double shiftedA = (a * shiftRightBy52).abs();
|
| - // Compared to 'a', 'shiftedA' is now ~1-2 ulp.
|
| -
|
| - final double limitLow = a - shiftedA;
|
| - final double limitHigh = a + shiftedA;
|
| - Expect.equals(false, a == limitLow);
|
| - Expect.equals(false, a == limitHigh);
|
| - Expect.equals(true, limitLow <= b);
|
| - Expect.equals(true, b <= limitHigh);
|
| - }
|
| -
|
| - static void testSqrt() {
|
| - checkVeryClose(2.0, Math.sqrt(4.0));
|
| - checkVeryClose(Math.SQRT2, Math.sqrt(2.0));
|
| - checkVeryClose(Math.SQRT1_2, Math.sqrt(0.5));
|
| - checkVeryClose(1e50, Math.sqrt(1e100));
|
| - checkVeryClose(1.1111111061110855443054405046358901279277111935183977e56,
|
| - Math.sqrt(12345678901234e99));
|
| - }
|
| -
|
| - static void testExp() {
|
| - checkVeryClose(Math.E, Math.exp(1.0));
|
| - final EPSILON = 1e-15;
|
| - checkClose(10.0, Math.exp(Math.LN10), EPSILON);
|
| - checkClose(2.0, Math.exp(Math.LN2), EPSILON);
|
| - }
|
| -
|
| - static void testLog() {
|
| - // Even though E is imprecise, it is good enough to get really close to 1.
|
| - // We still provide an epsilon.
|
| - checkClose(1.0, Math.log(Math.E), 1e-16);
|
| - checkVeryClose(Math.LN10, Math.log(10.0));
|
| - checkVeryClose(Math.LN2, Math.log(2.0));
|
| - }
|
| -
|
| - static void testPow() {
|
| - checkVeryClose(16.0, Math.pow(4.0, 2.0));
|
| - checkVeryClose(Math.SQRT2, Math.pow(2.0, 0.5));
|
| - checkVeryClose(Math.SQRT1_2, Math.pow(0.5, 0.5));
|
| - }
|
| -
|
| - static bool parseIntThrowsFormatException(str) {
|
| - try {
|
| - Math.parseInt(str);
|
| - return false;
|
| - } catch (FormatException e) {
|
| - return true;
|
| - }
|
| - }
|
| -
|
| - static void testParseInt() {
|
| - Expect.equals(499, Math.parseInt("499"));
|
| - Expect.equals(499, Math.parseInt("+499"));
|
| - Expect.equals(-499, Math.parseInt("-499"));
|
| - Expect.equals(499, Math.parseInt(" 499 "));
|
| - Expect.equals(499, Math.parseInt(" +499 "));
|
| - Expect.equals(-499, Math.parseInt(" -499 "));
|
| - Expect.equals(0, Math.parseInt("0"));
|
| - Expect.equals(0, Math.parseInt("+0"));
|
| - Expect.equals(0, Math.parseInt("-0"));
|
| - Expect.equals(0, Math.parseInt(" 0 "));
|
| - Expect.equals(0, Math.parseInt(" +0 "));
|
| - Expect.equals(0, Math.parseInt(" -0 "));
|
| - Expect.equals(0x1234567890, Math.parseInt("0x1234567890"));
|
| - Expect.equals(-0x1234567890, Math.parseInt("-0x1234567890"));
|
| - Expect.equals(0x1234567890, Math.parseInt(" 0x1234567890 "));
|
| - Expect.equals(-0x1234567890, Math.parseInt(" -0x1234567890 "));
|
| - Expect.equals(256, Math.parseInt("0x100"));
|
| - Expect.equals(-256, Math.parseInt("-0x100"));
|
| - Expect.equals(256, Math.parseInt(" 0x100 "));
|
| - Expect.equals(-256, Math.parseInt(" -0x100 "));
|
| - Expect.equals(0xabcdef, Math.parseInt("0xabcdef"));
|
| - Expect.equals(0xABCDEF, Math.parseInt("0xABCDEF"));
|
| - Expect.equals(0xabcdef, Math.parseInt("0xabCDEf"));
|
| - Expect.equals(-0xabcdef, Math.parseInt("-0xabcdef"));
|
| - Expect.equals(-0xABCDEF, Math.parseInt("-0xABCDEF"));
|
| - Expect.equals(0xabcdef, Math.parseInt(" 0xabcdef "));
|
| - Expect.equals(0xABCDEF, Math.parseInt(" 0xABCDEF "));
|
| - Expect.equals(-0xabcdef, Math.parseInt(" -0xabcdef "));
|
| - Expect.equals(-0xABCDEF, Math.parseInt(" -0xABCDEF "));
|
| - Expect.equals(0xabcdef, Math.parseInt("0x00000abcdef"));
|
| - Expect.equals(0xABCDEF, Math.parseInt("0x00000ABCDEF"));
|
| - Expect.equals(-0xabcdef, Math.parseInt("-0x00000abcdef"));
|
| - Expect.equals(-0xABCDEF, Math.parseInt("-0x00000ABCDEF"));
|
| - Expect.equals(0xabcdef, Math.parseInt(" 0x00000abcdef "));
|
| - Expect.equals(0xABCDEF, Math.parseInt(" 0x00000ABCDEF "));
|
| - Expect.equals(-0xabcdef, Math.parseInt(" -0x00000abcdef "));
|
| - Expect.equals(-0xABCDEF, Math.parseInt(" -0x00000ABCDEF "));
|
| - Expect.equals(10, Math.parseInt("010"));
|
| - Expect.equals(-10, Math.parseInt("-010"));
|
| - Expect.equals(10, Math.parseInt(" 010 "));
|
| - Expect.equals(-10, Math.parseInt(" -010 "));
|
| - Expect.equals(9, Math.parseInt("09"));
|
| - Expect.equals(9, Math.parseInt(" 09 "));
|
| - Expect.equals(-9, Math.parseInt("-09"));
|
| - Expect.equals(true, parseIntThrowsFormatException("1b"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" 1b "));
|
| - Expect.equals(true, parseIntThrowsFormatException(" 1 b "));
|
| - Expect.equals(true, parseIntThrowsFormatException("1e2"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" 1e2 "));
|
| - Expect.equals(true, parseIntThrowsFormatException("00x12"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" 00x12 "));
|
| - Expect.equals(true, parseIntThrowsFormatException("-1b"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" -1b "));
|
| - Expect.equals(true, parseIntThrowsFormatException(" -1 b "));
|
| - Expect.equals(true, parseIntThrowsFormatException("-1e2"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" -1e2 "));
|
| - Expect.equals(true, parseIntThrowsFormatException("-00x12"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" -00x12 "));
|
| - Expect.equals(true, parseIntThrowsFormatException(" -00x12 "));
|
| - Expect.equals(true, parseIntThrowsFormatException("0x0x12"));
|
| - Expect.equals(true, parseIntThrowsFormatException("0.1"));
|
| - Expect.equals(true, parseIntThrowsFormatException("0x3.1"));
|
| - Expect.equals(true, parseIntThrowsFormatException("5."));
|
| - Expect.equals(true, parseIntThrowsFormatException("+-5"));
|
| - Expect.equals(true, parseIntThrowsFormatException("-+5"));
|
| - Expect.equals(true, parseIntThrowsFormatException("--5"));
|
| - Expect.equals(true, parseIntThrowsFormatException("++5"));
|
| - Expect.equals(true, parseIntThrowsFormatException("+ 5"));
|
| - Expect.equals(true, parseIntThrowsFormatException("- 5"));
|
| - Expect.equals(true, parseIntThrowsFormatException(""));
|
| - Expect.equals(true, parseIntThrowsFormatException(" "));
|
| - Expect.equals(true, parseIntThrowsFormatException("+0x1234567890"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" +0x1234567890 "));
|
| - Expect.equals(true, parseIntThrowsFormatException("+0x100"));
|
| - Expect.equals(true, parseIntThrowsFormatException(" +0x100 "));
|
| - }
|
| -
|
| - static testMain() {
|
| - testConstants();
|
| - testSin();
|
| - testCos();
|
| - testTan();
|
| - testAsin();
|
| - testAcos();
|
| - testAtan();
|
| - testAtan2();
|
| - testSqrt();
|
| - testLog();
|
| - testExp();
|
| - testPow();
|
| - testParseInt();
|
| - }
|
| -}
|
| -
|
| class MathLibraryTest {
|
| static void testConstants() {
|
| // Source for mathematical constants is Wolfram Alpha.
|
| @@ -509,6 +259,5 @@ class MathLibraryTest {
|
| }
|
|
|
| main() {
|
| - MathTest.testMain();
|
| MathLibraryTest.testMain();
|
| }
|
|
|