Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(18)

Side by Side Diff: src/runtime.cc

Issue 10827440: Revert 3.13.3 push to trunk. (Closed) Base URL: https://v8.googlecode.com/svn/trunk
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/profile-generator.cc ('k') | src/scopes.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 285 matching lines...) Expand 10 before | Expand all | Expand 10 after
296 // An index key does not require space in the property backing store. 296 // An index key does not require space in the property backing store.
297 number_of_properties--; 297 number_of_properties--;
298 } else { 298 } else {
299 // Bail out as a non-symbol non-index key makes caching impossible. 299 // Bail out as a non-symbol non-index key makes caching impossible.
300 // ASSERT to make sure that the if condition after the loop is false. 300 // ASSERT to make sure that the if condition after the loop is false.
301 ASSERT(number_of_symbol_keys != number_of_properties); 301 ASSERT(number_of_symbol_keys != number_of_properties);
302 break; 302 break;
303 } 303 }
304 } 304 }
305 // If we only have symbols and array indices among keys then we can 305 // If we only have symbols and array indices among keys then we can
306 // use the map cache in the native context. 306 // use the map cache in the global context.
307 const int kMaxKeys = 10; 307 const int kMaxKeys = 10;
308 if ((number_of_symbol_keys == number_of_properties) && 308 if ((number_of_symbol_keys == number_of_properties) &&
309 (number_of_symbol_keys < kMaxKeys)) { 309 (number_of_symbol_keys < kMaxKeys)) {
310 // Create the fixed array with the key. 310 // Create the fixed array with the key.
311 Handle<FixedArray> keys = 311 Handle<FixedArray> keys =
312 isolate->factory()->NewFixedArray(number_of_symbol_keys); 312 isolate->factory()->NewFixedArray(number_of_symbol_keys);
313 if (number_of_symbol_keys > 0) { 313 if (number_of_symbol_keys > 0) {
314 int index = 0; 314 int index = 0;
315 for (int p = 0; p < properties_length; p += 2) { 315 for (int p = 0; p < properties_length; p += 2) {
316 Object* key = constant_properties->get(p); 316 Object* key = constant_properties->get(p);
(...skipping 18 matching lines...) Expand all
335 Handle<FixedArray> literals, 335 Handle<FixedArray> literals,
336 Handle<FixedArray> constant_properties); 336 Handle<FixedArray> constant_properties);
337 337
338 338
339 static Handle<Object> CreateObjectLiteralBoilerplate( 339 static Handle<Object> CreateObjectLiteralBoilerplate(
340 Isolate* isolate, 340 Isolate* isolate,
341 Handle<FixedArray> literals, 341 Handle<FixedArray> literals,
342 Handle<FixedArray> constant_properties, 342 Handle<FixedArray> constant_properties,
343 bool should_have_fast_elements, 343 bool should_have_fast_elements,
344 bool has_function_literal) { 344 bool has_function_literal) {
345 // Get the native context from the literals array. This is the 345 // Get the global context from the literals array. This is the
346 // context in which the function was created and we use the object 346 // context in which the function was created and we use the object
347 // function from this context to create the object literal. We do 347 // function from this context to create the object literal. We do
348 // not use the object function from the current native context 348 // not use the object function from the current global context
349 // because this might be the object function from another context 349 // because this might be the object function from another context
350 // which we should not have access to. 350 // which we should not have access to.
351 Handle<Context> context = 351 Handle<Context> context =
352 Handle<Context>(JSFunction::NativeContextFromLiterals(*literals)); 352 Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));
353 353
354 // In case we have function literals, we want the object to be in 354 // In case we have function literals, we want the object to be in
355 // slow properties mode for now. We don't go in the map cache because 355 // slow properties mode for now. We don't go in the map cache because
356 // maps with constant functions can't be shared if the functions are 356 // maps with constant functions can't be shared if the functions are
357 // not the same (which is the common case). 357 // not the same (which is the common case).
358 bool is_result_from_cache = false; 358 bool is_result_from_cache = false;
359 Handle<Map> map = has_function_literal 359 Handle<Map> map = has_function_literal
360 ? Handle<Map>(context->object_function()->initial_map()) 360 ? Handle<Map>(context->object_function()->initial_map())
361 : ComputeObjectLiteralMap(context, 361 : ComputeObjectLiteralMap(context,
362 constant_properties, 362 constant_properties,
(...skipping 94 matching lines...) Expand 10 before | Expand all | Expand 10 after
457 457
458 static const int kSmiLiteralMinimumLength = 1024; 458 static const int kSmiLiteralMinimumLength = 1024;
459 459
460 460
461 Handle<Object> Runtime::CreateArrayLiteralBoilerplate( 461 Handle<Object> Runtime::CreateArrayLiteralBoilerplate(
462 Isolate* isolate, 462 Isolate* isolate,
463 Handle<FixedArray> literals, 463 Handle<FixedArray> literals,
464 Handle<FixedArray> elements) { 464 Handle<FixedArray> elements) {
465 // Create the JSArray. 465 // Create the JSArray.
466 Handle<JSFunction> constructor( 466 Handle<JSFunction> constructor(
467 JSFunction::NativeContextFromLiterals(*literals)->array_function()); 467 JSFunction::GlobalContextFromLiterals(*literals)->array_function());
468 Handle<JSArray> object = 468 Handle<JSArray> object =
469 Handle<JSArray>::cast(isolate->factory()->NewJSObject(constructor)); 469 Handle<JSArray>::cast(isolate->factory()->NewJSObject(constructor));
470 470
471 ElementsKind constant_elements_kind = 471 ElementsKind constant_elements_kind =
472 static_cast<ElementsKind>(Smi::cast(elements->get(0))->value()); 472 static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
473 Handle<FixedArrayBase> constant_elements_values( 473 Handle<FixedArrayBase> constant_elements_values(
474 FixedArrayBase::cast(elements->get(1))); 474 FixedArrayBase::cast(elements->get(1)));
475 475
476 ASSERT(IsFastElementsKind(constant_elements_kind)); 476 ASSERT(IsFastElementsKind(constant_elements_kind));
477 Context* native_context = isolate->context()->native_context(); 477 Context* global_context = isolate->context()->global_context();
478 Object* maybe_maps_array = native_context->js_array_maps(); 478 Object* maybe_maps_array = global_context->js_array_maps();
479 ASSERT(!maybe_maps_array->IsUndefined()); 479 ASSERT(!maybe_maps_array->IsUndefined());
480 Object* maybe_map = FixedArray::cast(maybe_maps_array)->get( 480 Object* maybe_map = FixedArray::cast(maybe_maps_array)->get(
481 constant_elements_kind); 481 constant_elements_kind);
482 ASSERT(maybe_map->IsMap()); 482 ASSERT(maybe_map->IsMap());
483 object->set_map(Map::cast(maybe_map)); 483 object->set_map(Map::cast(maybe_map));
484 484
485 Handle<FixedArrayBase> copied_elements_values; 485 Handle<FixedArrayBase> copied_elements_values;
486 if (IsFastDoubleElementsKind(constant_elements_kind)) { 486 if (IsFastDoubleElementsKind(constant_elements_kind)) {
487 ASSERT(FLAG_smi_only_arrays); 487 ASSERT(FLAG_smi_only_arrays);
488 copied_elements_values = isolate->factory()->CopyFixedDoubleArray( 488 copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
(...skipping 842 matching lines...) Expand 10 before | Expand all | Expand 10 after
1331 Handle<Object> error = 1331 Handle<Object> error =
1332 isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2)); 1332 isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2));
1333 return isolate->Throw(*error); 1333 return isolate->Throw(*error);
1334 } 1334 }
1335 1335
1336 1336
1337 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) { 1337 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) {
1338 ASSERT(args.length() == 3); 1338 ASSERT(args.length() == 3);
1339 HandleScope scope(isolate); 1339 HandleScope scope(isolate);
1340 Handle<GlobalObject> global = Handle<GlobalObject>( 1340 Handle<GlobalObject> global = Handle<GlobalObject>(
1341 isolate->context()->global_object()); 1341 isolate->context()->global());
1342 1342
1343 Handle<Context> context = args.at<Context>(0); 1343 Handle<Context> context = args.at<Context>(0);
1344 CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1); 1344 CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
1345 CONVERT_SMI_ARG_CHECKED(flags, 2); 1345 CONVERT_SMI_ARG_CHECKED(flags, 2);
1346 1346
1347 // Traverse the name/value pairs and set the properties. 1347 // Traverse the name/value pairs and set the properties.
1348 int length = pairs->length(); 1348 int length = pairs->length();
1349 for (int i = 0; i < length; i += 2) { 1349 for (int i = 0; i < length; i += 2) {
1350 HandleScope scope(isolate); 1350 HandleScope scope(isolate);
1351 Handle<String> name(String::cast(pairs->get(i))); 1351 Handle<String> name(String::cast(pairs->get(i)));
(...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after
1439 1439
1440 ASSERT(!isolate->has_pending_exception()); 1440 ASSERT(!isolate->has_pending_exception());
1441 return isolate->heap()->undefined_value(); 1441 return isolate->heap()->undefined_value();
1442 } 1442 }
1443 1443
1444 1444
1445 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) { 1445 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) {
1446 HandleScope scope(isolate); 1446 HandleScope scope(isolate);
1447 ASSERT(args.length() == 4); 1447 ASSERT(args.length() == 4);
1448 1448
1449 // Declarations are always made in a function or native context. In the 1449 // Declarations are always made in a function or global context. In the
1450 // case of eval code, the context passed is the context of the caller, 1450 // case of eval code, the context passed is the context of the caller,
1451 // which may be some nested context and not the declaration context. 1451 // which may be some nested context and not the declaration context.
1452 RUNTIME_ASSERT(args[0]->IsContext()); 1452 RUNTIME_ASSERT(args[0]->IsContext());
1453 Handle<Context> context(Context::cast(args[0])->declaration_context()); 1453 Handle<Context> context(Context::cast(args[0])->declaration_context());
1454 1454
1455 Handle<String> name(String::cast(args[1])); 1455 Handle<String> name(String::cast(args[1]));
1456 PropertyAttributes mode = static_cast<PropertyAttributes>(args.smi_at(2)); 1456 PropertyAttributes mode = static_cast<PropertyAttributes>(args.smi_at(2));
1457 RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE); 1457 RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE);
1458 Handle<Object> initial_value(args[3], isolate); 1458 Handle<Object> initial_value(args[3], isolate);
1459 1459
(...skipping 18 matching lines...) Expand all
1478 // Initialize it if necessary. 1478 // Initialize it if necessary.
1479 if (*initial_value != NULL) { 1479 if (*initial_value != NULL) {
1480 if (index >= 0) { 1480 if (index >= 0) {
1481 ASSERT(holder.is_identical_to(context)); 1481 ASSERT(holder.is_identical_to(context));
1482 if (((attributes & READ_ONLY) == 0) || 1482 if (((attributes & READ_ONLY) == 0) ||
1483 context->get(index)->IsTheHole()) { 1483 context->get(index)->IsTheHole()) {
1484 context->set(index, *initial_value); 1484 context->set(index, *initial_value);
1485 } 1485 }
1486 } else { 1486 } else {
1487 // Slow case: The property is in the context extension object of a 1487 // Slow case: The property is in the context extension object of a
1488 // function context or the global object of a native context. 1488 // function context or the global object of a global context.
1489 Handle<JSObject> object = Handle<JSObject>::cast(holder); 1489 Handle<JSObject> object = Handle<JSObject>::cast(holder);
1490 RETURN_IF_EMPTY_HANDLE( 1490 RETURN_IF_EMPTY_HANDLE(
1491 isolate, 1491 isolate,
1492 JSReceiver::SetProperty(object, name, initial_value, mode, 1492 JSReceiver::SetProperty(object, name, initial_value, mode,
1493 kNonStrictMode)); 1493 kNonStrictMode));
1494 } 1494 }
1495 } 1495 }
1496 1496
1497 } else { 1497 } else {
1498 // The property is not in the function context. It needs to be 1498 // The property is not in the function context. It needs to be
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after
1549 // args[0] == name 1549 // args[0] == name
1550 // args[1] == language_mode 1550 // args[1] == language_mode
1551 // args[2] == value (optional) 1551 // args[2] == value (optional)
1552 1552
1553 // Determine if we need to assign to the variable if it already 1553 // Determine if we need to assign to the variable if it already
1554 // exists (based on the number of arguments). 1554 // exists (based on the number of arguments).
1555 RUNTIME_ASSERT(args.length() == 2 || args.length() == 3); 1555 RUNTIME_ASSERT(args.length() == 2 || args.length() == 3);
1556 bool assign = args.length() == 3; 1556 bool assign = args.length() == 3;
1557 1557
1558 CONVERT_ARG_HANDLE_CHECKED(String, name, 0); 1558 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
1559 GlobalObject* global = isolate->context()->global_object(); 1559 GlobalObject* global = isolate->context()->global();
1560 RUNTIME_ASSERT(args[1]->IsSmi()); 1560 RUNTIME_ASSERT(args[1]->IsSmi());
1561 CONVERT_LANGUAGE_MODE_ARG(language_mode, 1); 1561 CONVERT_LANGUAGE_MODE_ARG(language_mode, 1);
1562 StrictModeFlag strict_mode_flag = (language_mode == CLASSIC_MODE) 1562 StrictModeFlag strict_mode_flag = (language_mode == CLASSIC_MODE)
1563 ? kNonStrictMode : kStrictMode; 1563 ? kNonStrictMode : kStrictMode;
1564 1564
1565 // According to ECMA-262, section 12.2, page 62, the property must 1565 // According to ECMA-262, section 12.2, page 62, the property must
1566 // not be deletable. 1566 // not be deletable.
1567 PropertyAttributes attributes = DONT_DELETE; 1567 PropertyAttributes attributes = DONT_DELETE;
1568 1568
1569 // Lookup the property locally in the global object. If it isn't 1569 // Lookup the property locally in the global object. If it isn't
(...skipping 22 matching lines...) Expand all
1592 &lookup, *name, args[2], attributes, strict_mode_flag); 1592 &lookup, *name, args[2], attributes, strict_mode_flag);
1593 } else { 1593 } else {
1594 return isolate->heap()->undefined_value(); 1594 return isolate->heap()->undefined_value();
1595 } 1595 }
1596 } 1596 }
1597 } 1597 }
1598 object = raw_holder->GetPrototype(); 1598 object = raw_holder->GetPrototype();
1599 } 1599 }
1600 1600
1601 // Reload global in case the loop above performed a GC. 1601 // Reload global in case the loop above performed a GC.
1602 global = isolate->context()->global_object(); 1602 global = isolate->context()->global();
1603 if (assign) { 1603 if (assign) {
1604 return global->SetProperty(*name, args[2], attributes, strict_mode_flag); 1604 return global->SetProperty(*name, args[2], attributes, strict_mode_flag);
1605 } 1605 }
1606 return isolate->heap()->undefined_value(); 1606 return isolate->heap()->undefined_value();
1607 } 1607 }
1608 1608
1609 1609
1610 RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) { 1610 RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) {
1611 // All constants are declared with an initial value. The name 1611 // All constants are declared with an initial value. The name
1612 // of the constant is the first argument and the initial value 1612 // of the constant is the first argument and the initial value
1613 // is the second. 1613 // is the second.
1614 RUNTIME_ASSERT(args.length() == 2); 1614 RUNTIME_ASSERT(args.length() == 2);
1615 CONVERT_ARG_HANDLE_CHECKED(String, name, 0); 1615 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
1616 Handle<Object> value = args.at<Object>(1); 1616 Handle<Object> value = args.at<Object>(1);
1617 1617
1618 // Get the current global object from top. 1618 // Get the current global object from top.
1619 GlobalObject* global = isolate->context()->global_object(); 1619 GlobalObject* global = isolate->context()->global();
1620 1620
1621 // According to ECMA-262, section 12.2, page 62, the property must 1621 // According to ECMA-262, section 12.2, page 62, the property must
1622 // not be deletable. Since it's a const, it must be READ_ONLY too. 1622 // not be deletable. Since it's a const, it must be READ_ONLY too.
1623 PropertyAttributes attributes = 1623 PropertyAttributes attributes =
1624 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); 1624 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
1625 1625
1626 // Lookup the property locally in the global object. If it isn't 1626 // Lookup the property locally in the global object. If it isn't
1627 // there, we add the property and take special precautions to always 1627 // there, we add the property and take special precautions to always
1628 // add it as a local property even in case of callbacks in the 1628 // add it as a local property even in case of callbacks in the
1629 // prototype chain (this rules out using SetProperty). 1629 // prototype chain (this rules out using SetProperty).
1630 // We use SetLocalPropertyIgnoreAttributes instead 1630 // We use SetLocalPropertyIgnoreAttributes instead
1631 LookupResult lookup(isolate); 1631 LookupResult lookup(isolate);
1632 global->LocalLookup(*name, &lookup); 1632 global->LocalLookup(*name, &lookup);
1633 if (!lookup.IsFound()) { 1633 if (!lookup.IsFound()) {
1634 return global->SetLocalPropertyIgnoreAttributes(*name, 1634 return global->SetLocalPropertyIgnoreAttributes(*name,
1635 *value, 1635 *value,
1636 attributes); 1636 attributes);
1637 } 1637 }
1638 1638
1639 if (!lookup.IsReadOnly()) { 1639 if (!lookup.IsReadOnly()) {
1640 // Restore global object from context (in case of GC) and continue 1640 // Restore global object from context (in case of GC) and continue
1641 // with setting the value. 1641 // with setting the value.
1642 HandleScope handle_scope(isolate); 1642 HandleScope handle_scope(isolate);
1643 Handle<GlobalObject> global(isolate->context()->global_object()); 1643 Handle<GlobalObject> global(isolate->context()->global());
1644 1644
1645 // BUG 1213575: Handle the case where we have to set a read-only 1645 // BUG 1213575: Handle the case where we have to set a read-only
1646 // property through an interceptor and only do it if it's 1646 // property through an interceptor and only do it if it's
1647 // uninitialized, e.g. the hole. Nirk... 1647 // uninitialized, e.g. the hole. Nirk...
1648 // Passing non-strict mode because the property is writable. 1648 // Passing non-strict mode because the property is writable.
1649 RETURN_IF_EMPTY_HANDLE( 1649 RETURN_IF_EMPTY_HANDLE(
1650 isolate, 1650 isolate,
1651 JSReceiver::SetProperty(global, name, value, attributes, 1651 JSReceiver::SetProperty(global, name, value, attributes,
1652 kNonStrictMode)); 1652 kNonStrictMode));
1653 return *value; 1653 return *value;
(...skipping 25 matching lines...) Expand all
1679 } 1679 }
1680 1680
1681 1681
1682 RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) { 1682 RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) {
1683 HandleScope scope(isolate); 1683 HandleScope scope(isolate);
1684 ASSERT(args.length() == 3); 1684 ASSERT(args.length() == 3);
1685 1685
1686 Handle<Object> value(args[0], isolate); 1686 Handle<Object> value(args[0], isolate);
1687 ASSERT(!value->IsTheHole()); 1687 ASSERT(!value->IsTheHole());
1688 1688
1689 // Initializations are always done in a function or native context. 1689 // Initializations are always done in a function or global context.
1690 RUNTIME_ASSERT(args[1]->IsContext()); 1690 RUNTIME_ASSERT(args[1]->IsContext());
1691 Handle<Context> context(Context::cast(args[1])->declaration_context()); 1691 Handle<Context> context(Context::cast(args[1])->declaration_context());
1692 1692
1693 Handle<String> name(String::cast(args[2])); 1693 Handle<String> name(String::cast(args[2]));
1694 1694
1695 int index; 1695 int index;
1696 PropertyAttributes attributes; 1696 PropertyAttributes attributes;
1697 ContextLookupFlags flags = FOLLOW_CHAINS; 1697 ContextLookupFlags flags = FOLLOW_CHAINS;
1698 BindingFlags binding_flags; 1698 BindingFlags binding_flags;
1699 Handle<Object> holder = 1699 Handle<Object> holder =
1700 context->Lookup(name, flags, &index, &attributes, &binding_flags); 1700 context->Lookup(name, flags, &index, &attributes, &binding_flags);
1701 1701
1702 if (index >= 0) { 1702 if (index >= 0) {
1703 ASSERT(holder->IsContext()); 1703 ASSERT(holder->IsContext());
1704 // Property was found in a context. Perform the assignment if we 1704 // Property was found in a context. Perform the assignment if we
1705 // found some non-constant or an uninitialized constant. 1705 // found some non-constant or an uninitialized constant.
1706 Handle<Context> context = Handle<Context>::cast(holder); 1706 Handle<Context> context = Handle<Context>::cast(holder);
1707 if ((attributes & READ_ONLY) == 0 || context->get(index)->IsTheHole()) { 1707 if ((attributes & READ_ONLY) == 0 || context->get(index)->IsTheHole()) {
1708 context->set(index, *value); 1708 context->set(index, *value);
1709 } 1709 }
1710 return *value; 1710 return *value;
1711 } 1711 }
1712 1712
1713 // The property could not be found, we introduce it as a property of the 1713 // The property could not be found, we introduce it as a property of the
1714 // global object. 1714 // global object.
1715 if (attributes == ABSENT) { 1715 if (attributes == ABSENT) {
1716 Handle<JSObject> global = Handle<JSObject>( 1716 Handle<JSObject> global = Handle<JSObject>(
1717 isolate->context()->global_object()); 1717 isolate->context()->global());
1718 // Strict mode not needed (const disallowed in strict mode). 1718 // Strict mode not needed (const disallowed in strict mode).
1719 RETURN_IF_EMPTY_HANDLE( 1719 RETURN_IF_EMPTY_HANDLE(
1720 isolate, 1720 isolate,
1721 JSReceiver::SetProperty(global, name, value, NONE, kNonStrictMode)); 1721 JSReceiver::SetProperty(global, name, value, NONE, kNonStrictMode));
1722 return *value; 1722 return *value;
1723 } 1723 }
1724 1724
1725 // The property was present in some function's context extension object, 1725 // The property was present in some function's context extension object,
1726 // as a property on the subject of a with, or as a property of the global 1726 // as a property on the subject of a with, or as a property of the global
1727 // object. 1727 // object.
(...skipping 100 matching lines...) Expand 10 before | Expand all | Expand 10 after
1828 } 1828 }
1829 FixedArray* elements = FixedArray::cast(new_object); 1829 FixedArray* elements = FixedArray::cast(new_object);
1830 { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw( 1830 { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw(
1831 JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE); 1831 JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE);
1832 if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; 1832 if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object;
1833 } 1833 }
1834 { 1834 {
1835 AssertNoAllocation no_gc; 1835 AssertNoAllocation no_gc;
1836 HandleScope scope(isolate); 1836 HandleScope scope(isolate);
1837 reinterpret_cast<HeapObject*>(new_object)-> 1837 reinterpret_cast<HeapObject*>(new_object)->
1838 set_map(isolate->native_context()->regexp_result_map()); 1838 set_map(isolate->global_context()->regexp_result_map());
1839 } 1839 }
1840 JSArray* array = JSArray::cast(new_object); 1840 JSArray* array = JSArray::cast(new_object);
1841 array->set_properties(isolate->heap()->empty_fixed_array()); 1841 array->set_properties(isolate->heap()->empty_fixed_array());
1842 array->set_elements(elements); 1842 array->set_elements(elements);
1843 array->set_length(Smi::FromInt(elements_count)); 1843 array->set_length(Smi::FromInt(elements_count));
1844 // Write in-object properties after the length of the array. 1844 // Write in-object properties after the length of the array.
1845 array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]); 1845 array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]);
1846 array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]); 1846 array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]);
1847 return array; 1847 return array;
1848 } 1848 }
(...skipping 131 matching lines...) Expand 10 before | Expand all | Expand 10 after
1980 } 1980 }
1981 JSFunction* function = JSFunction::cast(callable); 1981 JSFunction* function = JSFunction::cast(callable);
1982 1982
1983 SharedFunctionInfo* shared = function->shared(); 1983 SharedFunctionInfo* shared = function->shared();
1984 if (shared->native() || !shared->is_classic_mode()) { 1984 if (shared->native() || !shared->is_classic_mode()) {
1985 return isolate->heap()->undefined_value(); 1985 return isolate->heap()->undefined_value();
1986 } 1986 }
1987 // Returns undefined for strict or native functions, or 1987 // Returns undefined for strict or native functions, or
1988 // the associated global receiver for "normal" functions. 1988 // the associated global receiver for "normal" functions.
1989 1989
1990 Context* native_context = 1990 Context* global_context =
1991 function->context()->global_object()->native_context(); 1991 function->context()->global()->global_context();
1992 return native_context->global_object()->global_receiver(); 1992 return global_context->global()->global_receiver();
1993 } 1993 }
1994 1994
1995 1995
1996 RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) { 1996 RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) {
1997 HandleScope scope(isolate); 1997 HandleScope scope(isolate);
1998 ASSERT(args.length() == 4); 1998 ASSERT(args.length() == 4);
1999 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); 1999 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
2000 int index = args.smi_at(1); 2000 int index = args.smi_at(1);
2001 Handle<String> pattern = args.at<String>(2); 2001 Handle<String> pattern = args.at<String>(2);
2002 Handle<String> flags = args.at<String>(3); 2002 Handle<String> flags = args.at<String>(3);
2003 2003
2004 // Get the RegExp function from the context in the literals array. 2004 // Get the RegExp function from the context in the literals array.
2005 // This is the RegExp function from the context in which the 2005 // This is the RegExp function from the context in which the
2006 // function was created. We do not use the RegExp function from the 2006 // function was created. We do not use the RegExp function from the
2007 // current native context because this might be the RegExp function 2007 // current global context because this might be the RegExp function
2008 // from another context which we should not have access to. 2008 // from another context which we should not have access to.
2009 Handle<JSFunction> constructor = 2009 Handle<JSFunction> constructor =
2010 Handle<JSFunction>( 2010 Handle<JSFunction>(
2011 JSFunction::NativeContextFromLiterals(*literals)->regexp_function()); 2011 JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
2012 // Compute the regular expression literal. 2012 // Compute the regular expression literal.
2013 bool has_pending_exception; 2013 bool has_pending_exception;
2014 Handle<Object> regexp = 2014 Handle<Object> regexp =
2015 RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags, 2015 RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
2016 &has_pending_exception); 2016 &has_pending_exception);
2017 if (has_pending_exception) { 2017 if (has_pending_exception) {
2018 ASSERT(isolate->has_pending_exception()); 2018 ASSERT(isolate->has_pending_exception());
2019 return Failure::Exception(); 2019 return Failure::Exception();
2020 } 2020 }
2021 literals->set(index, *regexp); 2021 literals->set(index, *regexp);
(...skipping 233 matching lines...) Expand 10 before | Expand all | Expand 10 after
2255 // Set the code of the target function. 2255 // Set the code of the target function.
2256 target->ReplaceCode(source_shared->code()); 2256 target->ReplaceCode(source_shared->code());
2257 2257
2258 // Make sure we get a fresh copy of the literal vector to avoid cross 2258 // Make sure we get a fresh copy of the literal vector to avoid cross
2259 // context contamination. 2259 // context contamination.
2260 Handle<Context> context(source->context()); 2260 Handle<Context> context(source->context());
2261 int number_of_literals = source->NumberOfLiterals(); 2261 int number_of_literals = source->NumberOfLiterals();
2262 Handle<FixedArray> literals = 2262 Handle<FixedArray> literals =
2263 isolate->factory()->NewFixedArray(number_of_literals, TENURED); 2263 isolate->factory()->NewFixedArray(number_of_literals, TENURED);
2264 if (number_of_literals > 0) { 2264 if (number_of_literals > 0) {
2265 literals->set(JSFunction::kLiteralNativeContextIndex, 2265 literals->set(JSFunction::kLiteralGlobalContextIndex,
2266 context->native_context()); 2266 context->global_context());
2267 } 2267 }
2268 target->set_context(*context); 2268 target->set_context(*context);
2269 target->set_literals(*literals); 2269 target->set_literals(*literals);
2270 target->set_next_function_link(isolate->heap()->undefined_value()); 2270 target->set_next_function_link(isolate->heap()->undefined_value());
2271 2271
2272 if (isolate->logger()->is_logging() || CpuProfiler::is_profiling(isolate)) { 2272 if (isolate->logger()->is_logging() || CpuProfiler::is_profiling(isolate)) {
2273 isolate->logger()->LogExistingFunction( 2273 isolate->logger()->LogExistingFunction(
2274 source_shared, Handle<Code>(source_shared->code())); 2274 source_shared, Handle<Code>(source_shared->code()));
2275 } 2275 }
2276 2276
(...skipping 290 matching lines...) Expand 10 before | Expand all | Expand 10 after
2567 FixedArrayBuilder array_builder_; 2567 FixedArrayBuilder array_builder_;
2568 Handle<String> subject_; 2568 Handle<String> subject_;
2569 int character_count_; 2569 int character_count_;
2570 bool is_ascii_; 2570 bool is_ascii_;
2571 }; 2571 };
2572 2572
2573 2573
2574 class CompiledReplacement { 2574 class CompiledReplacement {
2575 public: 2575 public:
2576 explicit CompiledReplacement(Zone* zone) 2576 explicit CompiledReplacement(Zone* zone)
2577 : parts_(1, zone), replacement_substrings_(0, zone), 2577 : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
2578 simple_hint_(false),
2579 zone_(zone) {}
2580 2578
2581 void Compile(Handle<String> replacement, 2579 // Return whether the replacement is simple.
2580 bool Compile(Handle<String> replacement,
2582 int capture_count, 2581 int capture_count,
2583 int subject_length); 2582 int subject_length);
2584 2583
2584 // Use Apply only if Compile returned false.
2585 void Apply(ReplacementStringBuilder* builder, 2585 void Apply(ReplacementStringBuilder* builder,
2586 int match_from, 2586 int match_from,
2587 int match_to, 2587 int match_to,
2588 Handle<JSArray> last_match_info); 2588 int32_t* match);
2589 2589
2590 // Number of distinct parts of the replacement pattern. 2590 // Number of distinct parts of the replacement pattern.
2591 int parts() { 2591 int parts() {
2592 return parts_.length(); 2592 return parts_.length();
2593 } 2593 }
2594 2594
2595 bool simple_hint() {
2596 return simple_hint_;
2597 }
2598
2599 Zone* zone() const { return zone_; } 2595 Zone* zone() const { return zone_; }
2600 2596
2601 private: 2597 private:
2602 enum PartType { 2598 enum PartType {
2603 SUBJECT_PREFIX = 1, 2599 SUBJECT_PREFIX = 1,
2604 SUBJECT_SUFFIX, 2600 SUBJECT_SUFFIX,
2605 SUBJECT_CAPTURE, 2601 SUBJECT_CAPTURE,
2606 REPLACEMENT_SUBSTRING, 2602 REPLACEMENT_SUBSTRING,
2607 REPLACEMENT_STRING, 2603 REPLACEMENT_STRING,
2608 2604
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
2649 // tag == REPLACEMENT_STRING: data is index into array of substrings 2645 // tag == REPLACEMENT_STRING: data is index into array of substrings
2650 // of the replacement string. 2646 // of the replacement string.
2651 // tag <= 0: Temporary representation of the substring of the replacement 2647 // tag <= 0: Temporary representation of the substring of the replacement
2652 // string ranging over -tag .. data. 2648 // string ranging over -tag .. data.
2653 // Is replaced by REPLACEMENT_{SUB,}STRING when we create the 2649 // Is replaced by REPLACEMENT_{SUB,}STRING when we create the
2654 // substring objects. 2650 // substring objects.
2655 int data; 2651 int data;
2656 }; 2652 };
2657 2653
2658 template<typename Char> 2654 template<typename Char>
2659 static bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts, 2655 bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
2660 Vector<Char> characters, 2656 Vector<Char> characters,
2661 int capture_count, 2657 int capture_count,
2662 int subject_length, 2658 int subject_length,
2663 Zone* zone) { 2659 Zone* zone) {
2664 int length = characters.length(); 2660 int length = characters.length();
2665 int last = 0; 2661 int last = 0;
2666 for (int i = 0; i < length; i++) { 2662 for (int i = 0; i < length; i++) {
2667 Char c = characters[i]; 2663 Char c = characters[i];
2668 if (c == '$') { 2664 if (c == '$') {
2669 int next_index = i + 1; 2665 int next_index = i + 1;
2670 if (next_index == length) { // No next character! 2666 if (next_index == length) { // No next character!
2671 break; 2667 break;
2672 } 2668 }
2673 Char c2 = characters[next_index]; 2669 Char c2 = characters[next_index];
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
2747 break; 2743 break;
2748 } 2744 }
2749 default: 2745 default:
2750 i = next_index; 2746 i = next_index;
2751 break; 2747 break;
2752 } 2748 }
2753 } 2749 }
2754 } 2750 }
2755 if (length > last) { 2751 if (length > last) {
2756 if (last == 0) { 2752 if (last == 0) {
2757 parts->Add(ReplacementPart::ReplacementString(), zone); 2753 // Replacement is simple. Do not use Apply to do the replacement.
2758 return true; 2754 return true;
2759 } else { 2755 } else {
2760 parts->Add(ReplacementPart::ReplacementSubString(last, length), zone); 2756 parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
2761 } 2757 }
2762 } 2758 }
2763 return false; 2759 return false;
2764 } 2760 }
2765 2761
2766 ZoneList<ReplacementPart> parts_; 2762 ZoneList<ReplacementPart> parts_;
2767 ZoneList<Handle<String> > replacement_substrings_; 2763 ZoneList<Handle<String> > replacement_substrings_;
2768 bool simple_hint_;
2769 Zone* zone_; 2764 Zone* zone_;
2770 }; 2765 };
2771 2766
2772 2767
2773 void CompiledReplacement::Compile(Handle<String> replacement, 2768 bool CompiledReplacement::Compile(Handle<String> replacement,
2774 int capture_count, 2769 int capture_count,
2775 int subject_length) { 2770 int subject_length) {
2776 { 2771 {
2777 AssertNoAllocation no_alloc; 2772 AssertNoAllocation no_alloc;
2778 String::FlatContent content = replacement->GetFlatContent(); 2773 String::FlatContent content = replacement->GetFlatContent();
2779 ASSERT(content.IsFlat()); 2774 ASSERT(content.IsFlat());
2775 bool simple = false;
2780 if (content.IsAscii()) { 2776 if (content.IsAscii()) {
2781 simple_hint_ = ParseReplacementPattern(&parts_, 2777 simple = ParseReplacementPattern(&parts_,
2782 content.ToAsciiVector(), 2778 content.ToAsciiVector(),
2783 capture_count, 2779 capture_count,
2784 subject_length, 2780 subject_length,
2785 zone()); 2781 zone());
2786 } else { 2782 } else {
2787 ASSERT(content.IsTwoByte()); 2783 ASSERT(content.IsTwoByte());
2788 simple_hint_ = ParseReplacementPattern(&parts_, 2784 simple = ParseReplacementPattern(&parts_,
2789 content.ToUC16Vector(), 2785 content.ToUC16Vector(),
2790 capture_count, 2786 capture_count,
2791 subject_length, 2787 subject_length,
2792 zone()); 2788 zone());
2793 } 2789 }
2790 if (simple) return true;
2794 } 2791 }
2792
2795 Isolate* isolate = replacement->GetIsolate(); 2793 Isolate* isolate = replacement->GetIsolate();
2796 // Find substrings of replacement string and create them as String objects. 2794 // Find substrings of replacement string and create them as String objects.
2797 int substring_index = 0; 2795 int substring_index = 0;
2798 for (int i = 0, n = parts_.length(); i < n; i++) { 2796 for (int i = 0, n = parts_.length(); i < n; i++) {
2799 int tag = parts_[i].tag; 2797 int tag = parts_[i].tag;
2800 if (tag <= 0) { // A replacement string slice. 2798 if (tag <= 0) { // A replacement string slice.
2801 int from = -tag; 2799 int from = -tag;
2802 int to = parts_[i].data; 2800 int to = parts_[i].data;
2803 replacement_substrings_.Add( 2801 replacement_substrings_.Add(
2804 isolate->factory()->NewSubString(replacement, from, to), zone()); 2802 isolate->factory()->NewSubString(replacement, from, to), zone());
2805 parts_[i].tag = REPLACEMENT_SUBSTRING; 2803 parts_[i].tag = REPLACEMENT_SUBSTRING;
2806 parts_[i].data = substring_index; 2804 parts_[i].data = substring_index;
2807 substring_index++; 2805 substring_index++;
2808 } else if (tag == REPLACEMENT_STRING) { 2806 } else if (tag == REPLACEMENT_STRING) {
2809 replacement_substrings_.Add(replacement, zone()); 2807 replacement_substrings_.Add(replacement, zone());
2810 parts_[i].data = substring_index; 2808 parts_[i].data = substring_index;
2811 substring_index++; 2809 substring_index++;
2812 } 2810 }
2813 } 2811 }
2812 return false;
2814 } 2813 }
2815 2814
2816 2815
2817 void CompiledReplacement::Apply(ReplacementStringBuilder* builder, 2816 void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
2818 int match_from, 2817 int match_from,
2819 int match_to, 2818 int match_to,
2820 Handle<JSArray> last_match_info) { 2819 int32_t* match) {
2820 ASSERT_LT(0, parts_.length());
2821 for (int i = 0, n = parts_.length(); i < n; i++) { 2821 for (int i = 0, n = parts_.length(); i < n; i++) {
2822 ReplacementPart part = parts_[i]; 2822 ReplacementPart part = parts_[i];
2823 switch (part.tag) { 2823 switch (part.tag) {
2824 case SUBJECT_PREFIX: 2824 case SUBJECT_PREFIX:
2825 if (match_from > 0) builder->AddSubjectSlice(0, match_from); 2825 if (match_from > 0) builder->AddSubjectSlice(0, match_from);
2826 break; 2826 break;
2827 case SUBJECT_SUFFIX: { 2827 case SUBJECT_SUFFIX: {
2828 int subject_length = part.data; 2828 int subject_length = part.data;
2829 if (match_to < subject_length) { 2829 if (match_to < subject_length) {
2830 builder->AddSubjectSlice(match_to, subject_length); 2830 builder->AddSubjectSlice(match_to, subject_length);
2831 } 2831 }
2832 break; 2832 break;
2833 } 2833 }
2834 case SUBJECT_CAPTURE: { 2834 case SUBJECT_CAPTURE: {
2835 int capture = part.data; 2835 int capture = part.data;
2836 FixedArray* match_info = FixedArray::cast(last_match_info->elements()); 2836 int from = match[capture * 2];
2837 int from = RegExpImpl::GetCapture(match_info, capture * 2); 2837 int to = match[capture * 2 + 1];
2838 int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1);
2839 if (from >= 0 && to > from) { 2838 if (from >= 0 && to > from) {
2840 builder->AddSubjectSlice(from, to); 2839 builder->AddSubjectSlice(from, to);
2841 } 2840 }
2842 break; 2841 break;
2843 } 2842 }
2844 case REPLACEMENT_SUBSTRING: 2843 case REPLACEMENT_SUBSTRING:
2845 case REPLACEMENT_STRING: 2844 case REPLACEMENT_STRING:
2846 builder->AddString(replacement_substrings_[part.data]); 2845 builder->AddString(replacement_substrings_[part.data]);
2847 break; 2846 break;
2848 default: 2847 default:
(...skipping 101 matching lines...) Expand 10 before | Expand all | Expand 10 after
2950 pattern_content.ToUC16Vector(), 2949 pattern_content.ToUC16Vector(),
2951 indices, 2950 indices,
2952 limit, 2951 limit,
2953 zone); 2952 zone);
2954 } 2953 }
2955 } 2954 }
2956 } 2955 }
2957 } 2956 }
2958 2957
2959 2958
2960 // Two smis before and after the match, for very long strings.
2961 const int kMaxBuilderEntriesPerRegExpMatch = 5;
2962
2963
2964 static void SetLastMatchInfoNoCaptures(Handle<String> subject,
2965 Handle<JSArray> last_match_info,
2966 int match_start,
2967 int match_end) {
2968 // Fill last_match_info with a single capture.
2969 last_match_info->EnsureSize(2 + RegExpImpl::kLastMatchOverhead);
2970 AssertNoAllocation no_gc;
2971 FixedArray* elements = FixedArray::cast(last_match_info->elements());
2972 RegExpImpl::SetLastCaptureCount(elements, 2);
2973 RegExpImpl::SetLastInput(elements, *subject);
2974 RegExpImpl::SetLastSubject(elements, *subject);
2975 RegExpImpl::SetCapture(elements, 0, match_start);
2976 RegExpImpl::SetCapture(elements, 1, match_end);
2977 }
2978
2979
2980 template <typename SubjectChar, typename PatternChar>
2981 static bool SearchStringMultiple(Isolate* isolate,
2982 Vector<const SubjectChar> subject,
2983 Vector<const PatternChar> pattern,
2984 String* pattern_string,
2985 FixedArrayBuilder* builder,
2986 int* match_pos) {
2987 int pos = *match_pos;
2988 int subject_length = subject.length();
2989 int pattern_length = pattern.length();
2990 int max_search_start = subject_length - pattern_length;
2991 StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
2992 while (pos <= max_search_start) {
2993 if (!builder->HasCapacity(kMaxBuilderEntriesPerRegExpMatch)) {
2994 *match_pos = pos;
2995 return false;
2996 }
2997 // Position of end of previous match.
2998 int match_end = pos + pattern_length;
2999 int new_pos = search.Search(subject, match_end);
3000 if (new_pos >= 0) {
3001 // A match.
3002 if (new_pos > match_end) {
3003 ReplacementStringBuilder::AddSubjectSlice(builder,
3004 match_end,
3005 new_pos);
3006 }
3007 pos = new_pos;
3008 builder->Add(pattern_string);
3009 } else {
3010 break;
3011 }
3012 }
3013
3014 if (pos < max_search_start) {
3015 ReplacementStringBuilder::AddSubjectSlice(builder,
3016 pos + pattern_length,
3017 subject_length);
3018 }
3019 *match_pos = pos;
3020 return true;
3021 }
3022
3023
3024
3025
3026 template<typename ResultSeqString> 2959 template<typename ResultSeqString>
3027 MUST_USE_RESULT static MaybeObject* StringReplaceAtomRegExpWithString( 2960 MUST_USE_RESULT static MaybeObject* StringReplaceAtomRegExpWithString(
3028 Isolate* isolate, 2961 Isolate* isolate,
3029 Handle<String> subject, 2962 Handle<String> subject,
3030 Handle<JSRegExp> pattern_regexp, 2963 Handle<JSRegExp> pattern_regexp,
3031 Handle<String> replacement, 2964 Handle<String> replacement,
3032 Handle<JSArray> last_match_info, 2965 Handle<JSArray> last_match_info) {
3033 Zone* zone) {
3034 ASSERT(subject->IsFlat()); 2966 ASSERT(subject->IsFlat());
3035 ASSERT(replacement->IsFlat()); 2967 ASSERT(replacement->IsFlat());
3036 2968
3037 ZoneScope zone_space(isolate->runtime_zone(), DELETE_ON_EXIT); 2969 Zone* zone = isolate->runtime_zone();
3038 ZoneList<int> indices(8, isolate->runtime_zone()); 2970 ZoneScope zone_space(zone, DELETE_ON_EXIT);
2971 ZoneList<int> indices(8, zone);
3039 ASSERT_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag()); 2972 ASSERT_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
3040 String* pattern = 2973 String* pattern =
3041 String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex)); 2974 String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
3042 int subject_len = subject->length(); 2975 int subject_len = subject->length();
3043 int pattern_len = pattern->length(); 2976 int pattern_len = pattern->length();
3044 int replacement_len = replacement->length(); 2977 int replacement_len = replacement->length();
3045 2978
3046 FindStringIndicesDispatch(isolate, *subject, pattern, &indices, 0xffffffff, 2979 FindStringIndicesDispatch(
3047 zone); 2980 isolate, *subject, pattern, &indices, 0xffffffff, zone);
3048 2981
3049 int matches = indices.length(); 2982 int matches = indices.length();
3050 if (matches == 0) return *subject; 2983 if (matches == 0) return *subject;
3051 2984
3052 // Detect integer overflow. 2985 // Detect integer overflow.
3053 int64_t result_len_64 = 2986 int64_t result_len_64 =
3054 (static_cast<int64_t>(replacement_len) - 2987 (static_cast<int64_t>(replacement_len) -
3055 static_cast<int64_t>(pattern_len)) * 2988 static_cast<int64_t>(pattern_len)) *
3056 static_cast<int64_t>(matches) + 2989 static_cast<int64_t>(matches) +
3057 static_cast<int64_t>(subject_len); 2990 static_cast<int64_t>(subject_len);
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
3092 subject_pos = indices.at(i) + pattern_len; 3025 subject_pos = indices.at(i) + pattern_len;
3093 } 3026 }
3094 // Add remaining subject content at the end. 3027 // Add remaining subject content at the end.
3095 if (subject_pos < subject_len) { 3028 if (subject_pos < subject_len) {
3096 String::WriteToFlat(*subject, 3029 String::WriteToFlat(*subject,
3097 result->GetChars() + result_pos, 3030 result->GetChars() + result_pos,
3098 subject_pos, 3031 subject_pos,
3099 subject_len); 3032 subject_len);
3100 } 3033 }
3101 3034
3102 SetLastMatchInfoNoCaptures(subject, 3035 int32_t match_indices[] = { indices.at(matches - 1),
3103 last_match_info, 3036 indices.at(matches - 1) + pattern_len };
3104 indices.at(matches - 1), 3037 RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
3105 indices.at(matches - 1) + pattern_len);
3106 3038
3107 return *result; 3039 return *result;
3108 } 3040 }
3109 3041
3110 3042
3111 MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithString( 3043 MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithString(
3112 Isolate* isolate, 3044 Isolate* isolate,
3113 String* subject, 3045 Handle<String> subject,
3114 JSRegExp* regexp, 3046 Handle<JSRegExp> regexp,
3115 String* replacement, 3047 Handle<String> replacement,
3116 JSArray* last_match_info, 3048 Handle<JSArray> last_match_info) {
3117 Zone* zone) {
3118 ASSERT(subject->IsFlat()); 3049 ASSERT(subject->IsFlat());
3119 ASSERT(replacement->IsFlat()); 3050 ASSERT(replacement->IsFlat());
3120 3051
3121 HandleScope handles(isolate); 3052 bool is_global = regexp->GetFlags().is_global();
3122 3053 int capture_count = regexp->CaptureCount();
3123 int length = subject->length(); 3054 int subject_length = subject->length();
3124 Handle<String> subject_handle(subject);
3125 Handle<JSRegExp> regexp_handle(regexp);
3126 Handle<String> replacement_handle(replacement);
3127 Handle<JSArray> last_match_info_handle(last_match_info);
3128 Handle<Object> match = RegExpImpl::Exec(regexp_handle,
3129 subject_handle,
3130 0,
3131 last_match_info_handle);
3132 if (match.is_null()) {
3133 return Failure::Exception();
3134 }
3135 if (match->IsNull()) {
3136 return *subject_handle;
3137 }
3138
3139 int capture_count = regexp_handle->CaptureCount();
3140 3055
3141 // CompiledReplacement uses zone allocation. 3056 // CompiledReplacement uses zone allocation.
3057 Zone* zone = isolate->runtime_zone();
3142 ZoneScope zonescope(zone, DELETE_ON_EXIT); 3058 ZoneScope zonescope(zone, DELETE_ON_EXIT);
3143 CompiledReplacement compiled_replacement(zone); 3059 CompiledReplacement compiled_replacement(zone);
3144 3060 bool simple_replace = compiled_replacement.Compile(replacement,
3145 compiled_replacement.Compile(replacement_handle, 3061 capture_count,
3146 capture_count, 3062 subject_length);
3147 length);
3148
3149 bool is_global = regexp_handle->GetFlags().is_global();
3150 3063
3151 // Shortcut for simple non-regexp global replacements 3064 // Shortcut for simple non-regexp global replacements
3152 if (is_global && 3065 if (is_global &&
3153 regexp_handle->TypeTag() == JSRegExp::ATOM && 3066 regexp->TypeTag() == JSRegExp::ATOM &&
3154 compiled_replacement.simple_hint()) { 3067 simple_replace) {
3155 if (subject_handle->HasOnlyAsciiChars() && 3068 if (subject->HasOnlyAsciiChars()) {
3156 replacement_handle->HasOnlyAsciiChars()) {
3157 return StringReplaceAtomRegExpWithString<SeqAsciiString>( 3069 return StringReplaceAtomRegExpWithString<SeqAsciiString>(
3158 isolate, 3070 isolate, subject, regexp, replacement, last_match_info);
3159 subject_handle, 3071 } else {
3160 regexp_handle,
3161 replacement_handle,
3162 last_match_info_handle,
3163 zone);
3164 } else {
3165 return StringReplaceAtomRegExpWithString<SeqTwoByteString>( 3072 return StringReplaceAtomRegExpWithString<SeqTwoByteString>(
3166 isolate, 3073 isolate, subject, regexp, replacement, last_match_info);
3167 subject_handle,
3168 regexp_handle,
3169 replacement_handle,
3170 last_match_info_handle,
3171 zone);
3172 } 3074 }
3173 } 3075 }
3174 3076
3077 RegExpImpl::GlobalCache global_cache(regexp, subject, is_global, isolate);
3078 if (global_cache.HasException()) return Failure::Exception();
3079
3080 int32_t* current_match = global_cache.FetchNext();
3081 if (current_match == NULL) {
3082 if (global_cache.HasException()) return Failure::Exception();
3083 return *subject;
3084 }
3085
3175 // Guessing the number of parts that the final result string is built 3086 // Guessing the number of parts that the final result string is built
3176 // from. Global regexps can match any number of times, so we guess 3087 // from. Global regexps can match any number of times, so we guess
3177 // conservatively. 3088 // conservatively.
3178 int expected_parts = 3089 int expected_parts =
3179 (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1; 3090 (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1;
3180 ReplacementStringBuilder builder(isolate->heap(), 3091 ReplacementStringBuilder builder(isolate->heap(),
3181 subject_handle, 3092 subject,
3182 expected_parts); 3093 expected_parts);
3183 3094
3184 // Index of end of last match.
3185 int prev = 0;
3186
3187
3188 // Number of parts added by compiled replacement plus preceeding 3095 // Number of parts added by compiled replacement plus preceeding
3189 // string and possibly suffix after last match. It is possible for 3096 // string and possibly suffix after last match. It is possible for
3190 // all components to use two elements when encoded as two smis. 3097 // all components to use two elements when encoded as two smis.
3191 const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); 3098 const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
3192 bool matched = true; 3099
3100 int prev = 0;
3101
3193 do { 3102 do {
3194 ASSERT(last_match_info_handle->HasFastObjectElements());
3195 // Increase the capacity of the builder before entering local handle-scope,
3196 // so its internal buffer can safely allocate a new handle if it grows.
3197 builder.EnsureCapacity(parts_added_per_loop); 3103 builder.EnsureCapacity(parts_added_per_loop);
3198 3104
3199 HandleScope loop_scope(isolate); 3105 int start = current_match[0];
3200 int start, end; 3106 int end = current_match[1];
3201 {
3202 AssertNoAllocation match_info_array_is_not_in_a_handle;
3203 FixedArray* match_info_array =
3204 FixedArray::cast(last_match_info_handle->elements());
3205
3206 ASSERT_EQ(capture_count * 2 + 2,
3207 RegExpImpl::GetLastCaptureCount(match_info_array));
3208 start = RegExpImpl::GetCapture(match_info_array, 0);
3209 end = RegExpImpl::GetCapture(match_info_array, 1);
3210 }
3211 3107
3212 if (prev < start) { 3108 if (prev < start) {
3213 builder.AddSubjectSlice(prev, start); 3109 builder.AddSubjectSlice(prev, start);
3214 } 3110 }
3215 compiled_replacement.Apply(&builder,
3216 start,
3217 end,
3218 last_match_info_handle);
3219 3111
3112 if (simple_replace) {
3113 builder.AddString(replacement);
3114 } else {
3115 compiled_replacement.Apply(&builder,
3116 start,
3117 end,
3118 current_match);
3119 }
3220 prev = end; 3120 prev = end;
3221 3121
3222 // Only continue checking for global regexps. 3122 // Only continue checking for global regexps.
3223 if (!is_global) break; 3123 if (!is_global) break;
3224 3124
3225 // Continue from where the match ended, unless it was an empty match. 3125 current_match = global_cache.FetchNext();
3226 int next = end; 3126 } while (current_match != NULL);
3227 if (start == end) {
3228 next = end + 1;
3229 if (next > length) break;
3230 }
3231 3127
3232 match = RegExpImpl::Exec(regexp_handle, 3128 if (global_cache.HasException()) return Failure::Exception();
3233 subject_handle,
3234 next,
3235 last_match_info_handle);
3236 if (match.is_null()) {
3237 return Failure::Exception();
3238 }
3239 matched = !match->IsNull();
3240 } while (matched);
3241 3129
3242 if (prev < length) { 3130 if (prev < subject_length) {
3243 builder.AddSubjectSlice(prev, length); 3131 builder.EnsureCapacity(2);
3132 builder.AddSubjectSlice(prev, subject_length);
3244 } 3133 }
3245 3134
3135 RegExpImpl::SetLastMatchInfo(last_match_info,
3136 subject,
3137 capture_count,
3138 global_cache.LastSuccessfulMatch());
3139
3246 return *(builder.ToString()); 3140 return *(builder.ToString());
3247 } 3141 }
3248 3142
3249 3143
3250 template <typename ResultSeqString> 3144 template <typename ResultSeqString>
3251 MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithEmptyString( 3145 MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithEmptyString(
3252 Isolate* isolate, 3146 Isolate* isolate,
3253 String* subject, 3147 Handle<String> subject,
3254 JSRegExp* regexp, 3148 Handle<JSRegExp> regexp,
3255 JSArray* last_match_info, 3149 Handle<JSArray> last_match_info) {
3256 Zone* zone) {
3257 ASSERT(subject->IsFlat()); 3150 ASSERT(subject->IsFlat());
3258 3151
3259 HandleScope handles(isolate); 3152 bool is_global = regexp->GetFlags().is_global();
3260
3261 Handle<String> subject_handle(subject);
3262 Handle<JSRegExp> regexp_handle(regexp);
3263 Handle<JSArray> last_match_info_handle(last_match_info);
3264 3153
3265 // Shortcut for simple non-regexp global replacements 3154 // Shortcut for simple non-regexp global replacements
3266 if (regexp_handle->GetFlags().is_global() && 3155 if (is_global &&
3267 regexp_handle->TypeTag() == JSRegExp::ATOM) { 3156 regexp->TypeTag() == JSRegExp::ATOM) {
3268 Handle<String> empty_string_handle(HEAP->empty_string()); 3157 Handle<String> empty_string(HEAP->empty_string());
3269 if (subject_handle->HasOnlyAsciiChars()) { 3158 if (subject->HasOnlyAsciiChars()) {
3270 return StringReplaceAtomRegExpWithString<SeqAsciiString>( 3159 return StringReplaceAtomRegExpWithString<SeqAsciiString>(
3271 isolate, 3160 isolate,
3272 subject_handle, 3161 subject,
3273 regexp_handle, 3162 regexp,
3274 empty_string_handle, 3163 empty_string,
3275 last_match_info_handle, 3164 last_match_info);
3276 zone);
3277 } else { 3165 } else {
3278 return StringReplaceAtomRegExpWithString<SeqTwoByteString>( 3166 return StringReplaceAtomRegExpWithString<SeqTwoByteString>(
3279 isolate, 3167 isolate,
3280 subject_handle, 3168 subject,
3281 regexp_handle, 3169 regexp,
3282 empty_string_handle, 3170 empty_string,
3283 last_match_info_handle, 3171 last_match_info);
3284 zone);
3285 } 3172 }
3286 } 3173 }
3287 3174
3288 Handle<Object> match = RegExpImpl::Exec(regexp_handle, 3175 RegExpImpl::GlobalCache global_cache(regexp, subject, is_global, isolate);
3289 subject_handle, 3176 if (global_cache.HasException()) return Failure::Exception();
3290 0,
3291 last_match_info_handle);
3292 if (match.is_null()) return Failure::Exception();
3293 if (match->IsNull()) return *subject_handle;
3294 3177
3295 ASSERT(last_match_info_handle->HasFastObjectElements()); 3178 int32_t* current_match = global_cache.FetchNext();
3296 3179 if (current_match == NULL) {
3297 int start, end; 3180 if (global_cache.HasException()) return Failure::Exception();
3298 { 3181 return *subject;
3299 AssertNoAllocation match_info_array_is_not_in_a_handle;
3300 FixedArray* match_info_array =
3301 FixedArray::cast(last_match_info_handle->elements());
3302
3303 start = RegExpImpl::GetCapture(match_info_array, 0);
3304 end = RegExpImpl::GetCapture(match_info_array, 1);
3305 } 3182 }
3306 3183
3307 bool global = regexp_handle->GetFlags().is_global(); 3184 int start = current_match[0];
3185 int end = current_match[1];
3186 int capture_count = regexp->CaptureCount();
3187 int subject_length = subject->length();
3308 3188
3309 if (start == end && !global) return *subject_handle; 3189 int new_length = subject_length - (end - start);
3190 if (new_length == 0) return isolate->heap()->empty_string();
3310 3191
3311 int length = subject_handle->length();
3312 int new_length = length - (end - start);
3313 if (new_length == 0) {
3314 return isolate->heap()->empty_string();
3315 }
3316 Handle<ResultSeqString> answer; 3192 Handle<ResultSeqString> answer;
3317 if (ResultSeqString::kHasAsciiEncoding) { 3193 if (ResultSeqString::kHasAsciiEncoding) {
3318 answer = Handle<ResultSeqString>::cast( 3194 answer = Handle<ResultSeqString>::cast(
3319 isolate->factory()->NewRawAsciiString(new_length)); 3195 isolate->factory()->NewRawAsciiString(new_length));
3320 } else { 3196 } else {
3321 answer = Handle<ResultSeqString>::cast( 3197 answer = Handle<ResultSeqString>::cast(
3322 isolate->factory()->NewRawTwoByteString(new_length)); 3198 isolate->factory()->NewRawTwoByteString(new_length));
3323 } 3199 }
3324 3200
3325 // If the regexp isn't global, only match once. 3201 if (!is_global) {
3326 if (!global) { 3202 RegExpImpl::SetLastMatchInfo(
3327 if (start > 0) { 3203 last_match_info, subject, capture_count, current_match);
3328 String::WriteToFlat(*subject_handle, 3204 if (start == end) {
3329 answer->GetChars(), 3205 return *subject;
3330 0, 3206 } else {
3331 start); 3207 if (start > 0) {
3208 String::WriteToFlat(*subject, answer->GetChars(), 0, start);
3209 }
3210 if (end < subject_length) {
3211 String::WriteToFlat(
3212 *subject, answer->GetChars() + start, end, subject_length);
3213 }
3214 return *answer;
3332 } 3215 }
3333 if (end < length) {
3334 String::WriteToFlat(*subject_handle,
3335 answer->GetChars() + start,
3336 end,
3337 length);
3338 }
3339 return *answer;
3340 } 3216 }
3341 3217
3342 int prev = 0; // Index of end of last match. 3218 int prev = 0;
3343 int next = 0; // Start of next search (prev unless last match was empty).
3344 int position = 0; 3219 int position = 0;
3345 3220
3346 do { 3221 do {
3222 start = current_match[0];
3223 end = current_match[1];
3347 if (prev < start) { 3224 if (prev < start) {
3348 // Add substring subject[prev;start] to answer string. 3225 // Add substring subject[prev;start] to answer string.
3349 String::WriteToFlat(*subject_handle, 3226 String::WriteToFlat(
3350 answer->GetChars() + position, 3227 *subject, answer->GetChars() + position, prev, start);
3351 prev,
3352 start);
3353 position += start - prev; 3228 position += start - prev;
3354 } 3229 }
3355 prev = end; 3230 prev = end;
3356 next = end;
3357 // Continue from where the match ended, unless it was an empty match.
3358 if (start == end) {
3359 next++;
3360 if (next > length) break;
3361 }
3362 match = RegExpImpl::Exec(regexp_handle,
3363 subject_handle,
3364 next,
3365 last_match_info_handle);
3366 if (match.is_null()) return Failure::Exception();
3367 if (match->IsNull()) break;
3368 3231
3369 ASSERT(last_match_info_handle->HasFastObjectElements()); 3232 current_match = global_cache.FetchNext();
3370 HandleScope loop_scope(isolate); 3233 } while (current_match != NULL);
3371 {
3372 AssertNoAllocation match_info_array_is_not_in_a_handle;
3373 FixedArray* match_info_array =
3374 FixedArray::cast(last_match_info_handle->elements());
3375 start = RegExpImpl::GetCapture(match_info_array, 0);
3376 end = RegExpImpl::GetCapture(match_info_array, 1);
3377 }
3378 } while (true);
3379 3234
3380 if (prev < length) { 3235 if (global_cache.HasException()) return Failure::Exception();
3236
3237 RegExpImpl::SetLastMatchInfo(last_match_info,
3238 subject,
3239 capture_count,
3240 global_cache.LastSuccessfulMatch());
3241
3242 if (prev < subject_length) {
3381 // Add substring subject[prev;length] to answer string. 3243 // Add substring subject[prev;length] to answer string.
3382 String::WriteToFlat(*subject_handle, 3244 String::WriteToFlat(
3383 answer->GetChars() + position, 3245 *subject, answer->GetChars() + position, prev, subject_length);
3384 prev, 3246 position += subject_length - prev;
3385 length);
3386 position += length - prev;
3387 } 3247 }
3388 3248
3389 if (position == 0) { 3249 if (position == 0) return isolate->heap()->empty_string();
3390 return isolate->heap()->empty_string();
3391 }
3392 3250
3393 // Shorten string and fill 3251 // Shorten string and fill
3394 int string_size = ResultSeqString::SizeFor(position); 3252 int string_size = ResultSeqString::SizeFor(position);
3395 int allocated_string_size = ResultSeqString::SizeFor(new_length); 3253 int allocated_string_size = ResultSeqString::SizeFor(new_length);
3396 int delta = allocated_string_size - string_size; 3254 int delta = allocated_string_size - string_size;
3397 3255
3398 answer->set_length(position); 3256 answer->set_length(position);
3399 if (delta == 0) return *answer; 3257 if (delta == 0) return *answer;
3400 3258
3401 Address end_of_string = answer->address() + string_size; 3259 Address end_of_string = answer->address() + string_size;
3402 isolate->heap()->CreateFillerObjectAt(end_of_string, delta); 3260 isolate->heap()->CreateFillerObjectAt(end_of_string, delta);
3403 if (Marking::IsBlack(Marking::MarkBitFrom(*answer))) { 3261 if (Marking::IsBlack(Marking::MarkBitFrom(*answer))) {
3404 MemoryChunk::IncrementLiveBytesFromMutator(answer->address(), -delta); 3262 MemoryChunk::IncrementLiveBytesFromMutator(answer->address(), -delta);
3405 } 3263 }
3406 3264
3407 return *answer; 3265 return *answer;
3408 } 3266 }
3409 3267
3410 3268
3411 RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceRegExpWithString) { 3269 RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceRegExpWithString) {
3412 ASSERT(args.length() == 4); 3270 ASSERT(args.length() == 4);
3413 3271
3414 CONVERT_ARG_CHECKED(String, subject, 0); 3272 HandleScope scope(isolate);
3415 if (!subject->IsFlat()) {
3416 Object* flat_subject;
3417 { MaybeObject* maybe_flat_subject = subject->TryFlatten();
3418 if (!maybe_flat_subject->ToObject(&flat_subject)) {
3419 return maybe_flat_subject;
3420 }
3421 }
3422 subject = String::cast(flat_subject);
3423 }
3424 3273
3425 CONVERT_ARG_CHECKED(String, replacement, 2); 3274 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
3426 if (!replacement->IsFlat()) { 3275 CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
3427 Object* flat_replacement; 3276 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
3428 { MaybeObject* maybe_flat_replacement = replacement->TryFlatten(); 3277 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
3429 if (!maybe_flat_replacement->ToObject(&flat_replacement)) {
3430 return maybe_flat_replacement;
3431 }
3432 }
3433 replacement = String::cast(flat_replacement);
3434 }
3435 3278
3436 CONVERT_ARG_CHECKED(JSRegExp, regexp, 1); 3279 if (!subject->IsFlat()) subject = FlattenGetString(subject);
3437 CONVERT_ARG_CHECKED(JSArray, last_match_info, 3); 3280
3281 if (!replacement->IsFlat()) replacement = FlattenGetString(replacement);
3438 3282
3439 ASSERT(last_match_info->HasFastObjectElements()); 3283 ASSERT(last_match_info->HasFastObjectElements());
3440 3284
3441 Zone* zone = isolate->runtime_zone();
3442 if (replacement->length() == 0) { 3285 if (replacement->length() == 0) {
3443 if (subject->HasOnlyAsciiChars()) { 3286 if (subject->HasOnlyAsciiChars()) {
3444 return StringReplaceRegExpWithEmptyString<SeqAsciiString>( 3287 return StringReplaceRegExpWithEmptyString<SeqAsciiString>(
3445 isolate, subject, regexp, last_match_info, zone); 3288 isolate, subject, regexp, last_match_info);
3446 } else { 3289 } else {
3447 return StringReplaceRegExpWithEmptyString<SeqTwoByteString>( 3290 return StringReplaceRegExpWithEmptyString<SeqTwoByteString>(
3448 isolate, subject, regexp, last_match_info, zone); 3291 isolate, subject, regexp, last_match_info);
3449 } 3292 }
3450 } 3293 }
3451 3294
3452 return StringReplaceRegExpWithString(isolate, 3295 return StringReplaceRegExpWithString(
3453 subject, 3296 isolate, subject, regexp, replacement, last_match_info);
3454 regexp,
3455 replacement,
3456 last_match_info,
3457 zone);
3458 } 3297 }
3459 3298
3460 3299
3461 Handle<String> Runtime::StringReplaceOneCharWithString(Isolate* isolate, 3300 Handle<String> Runtime::StringReplaceOneCharWithString(Isolate* isolate,
3462 Handle<String> subject, 3301 Handle<String> subject,
3463 Handle<String> search, 3302 Handle<String> search,
3464 Handle<String> replace, 3303 Handle<String> replace,
3465 bool* found, 3304 bool* found,
3466 int recursion_limit) { 3305 int recursion_limit) {
3467 if (recursion_limit == 0) return Handle<String>::null(); 3306 if (recursion_limit == 0) return Handle<String>::null();
(...skipping 302 matching lines...) Expand 10 before | Expand all | Expand 10 after
3770 3609
3771 3610
3772 RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) { 3611 RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) {
3773 ASSERT_EQ(3, args.length()); 3612 ASSERT_EQ(3, args.length());
3774 3613
3775 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); 3614 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
3776 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); 3615 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
3777 CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2); 3616 CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
3778 HandleScope handles; 3617 HandleScope handles;
3779 3618
3780 Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info); 3619 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
3620 if (global_cache.HasException()) return Failure::Exception();
3781 3621
3782 if (match.is_null()) { 3622 int capture_count = regexp->CaptureCount();
3783 return Failure::Exception();
3784 }
3785 if (match->IsNull()) {
3786 return isolate->heap()->null_value();
3787 }
3788 int length = subject->length();
3789 3623
3790 Zone* zone = isolate->runtime_zone(); 3624 Zone* zone = isolate->runtime_zone();
3791 ZoneScope zone_space(zone, DELETE_ON_EXIT); 3625 ZoneScope zone_space(zone, DELETE_ON_EXIT);
3792 ZoneList<int> offsets(8, zone); 3626 ZoneList<int> offsets(8, zone);
3793 int start; 3627
3794 int end; 3628 while (true) {
3795 do { 3629 int32_t* match = global_cache.FetchNext();
3796 { 3630 if (match == NULL) break;
3797 AssertNoAllocation no_alloc; 3631 offsets.Add(match[0], zone); // start
3798 FixedArray* elements = FixedArray::cast(regexp_info->elements()); 3632 offsets.Add(match[1], zone); // end
3799 start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value(); 3633 }
3800 end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value(); 3634
3801 } 3635 if (global_cache.HasException()) return Failure::Exception();
3802 offsets.Add(start, zone); 3636
3803 offsets.Add(end, zone); 3637 if (offsets.length() == 0) {
3804 if (start == end) if (++end > length) break; 3638 // Not a single match.
3805 match = RegExpImpl::Exec(regexp, subject, end, regexp_info); 3639 return isolate->heap()->null_value();
3806 if (match.is_null()) { 3640 }
3807 return Failure::Exception(); 3641
3808 } 3642 RegExpImpl::SetLastMatchInfo(regexp_info,
3809 } while (!match->IsNull()); 3643 subject,
3644 capture_count,
3645 global_cache.LastSuccessfulMatch());
3646
3810 int matches = offsets.length() / 2; 3647 int matches = offsets.length() / 2;
3811 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); 3648 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
3812 Handle<String> substring = isolate->factory()-> 3649 Handle<String> substring =
3813 NewSubString(subject, offsets.at(0), offsets.at(1)); 3650 isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
3814 elements->set(0, *substring); 3651 elements->set(0, *substring);
3815 for (int i = 1; i < matches ; i++) { 3652 for (int i = 1; i < matches; i++) {
3653 HandleScope temp_scope(isolate);
3816 int from = offsets.at(i * 2); 3654 int from = offsets.at(i * 2);
3817 int to = offsets.at(i * 2 + 1); 3655 int to = offsets.at(i * 2 + 1);
3818 Handle<String> substring = isolate->factory()-> 3656 Handle<String> substring =
3819 NewProperSubString(subject, from, to); 3657 isolate->factory()->NewProperSubString(subject, from, to);
3820 elements->set(i, *substring); 3658 elements->set(i, *substring);
3821 } 3659 }
3822 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); 3660 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
3823 result->set_length(Smi::FromInt(matches)); 3661 result->set_length(Smi::FromInt(matches));
3824 return *result; 3662 return *result;
3825 } 3663 }
3826 3664
3827 3665
3828 static bool SearchStringMultiple(Isolate* isolate, 3666 // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
3829 Handle<String> subject, 3667 // separate last match info. See comment on that function.
3830 Handle<String> pattern, 3668 template<bool has_capture>
3831 Handle<JSArray> last_match_info, 3669 static int SearchRegExpMultiple(
3832 FixedArrayBuilder* builder) {
3833 ASSERT(subject->IsFlat());
3834 ASSERT(pattern->IsFlat());
3835
3836 // Treating as if a previous match was before first character.
3837 int match_pos = -pattern->length();
3838
3839 for (;;) { // Break when search complete.
3840 builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
3841 AssertNoAllocation no_gc;
3842 String::FlatContent subject_content = subject->GetFlatContent();
3843 String::FlatContent pattern_content = pattern->GetFlatContent();
3844 if (subject_content.IsAscii()) {
3845 Vector<const char> subject_vector = subject_content.ToAsciiVector();
3846 if (pattern_content.IsAscii()) {
3847 if (SearchStringMultiple(isolate,
3848 subject_vector,
3849 pattern_content.ToAsciiVector(),
3850 *pattern,
3851 builder,
3852 &match_pos)) break;
3853 } else {
3854 if (SearchStringMultiple(isolate,
3855 subject_vector,
3856 pattern_content.ToUC16Vector(),
3857 *pattern,
3858 builder,
3859 &match_pos)) break;
3860 }
3861 } else {
3862 Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
3863 if (pattern_content.IsAscii()) {
3864 if (SearchStringMultiple(isolate,
3865 subject_vector,
3866 pattern_content.ToAsciiVector(),
3867 *pattern,
3868 builder,
3869 &match_pos)) break;
3870 } else {
3871 if (SearchStringMultiple(isolate,
3872 subject_vector,
3873 pattern_content.ToUC16Vector(),
3874 *pattern,
3875 builder,
3876 &match_pos)) break;
3877 }
3878 }
3879 }
3880
3881 if (match_pos >= 0) {
3882 SetLastMatchInfoNoCaptures(subject,
3883 last_match_info,
3884 match_pos,
3885 match_pos + pattern->length());
3886 return true;
3887 }
3888 return false; // No matches at all.
3889 }
3890
3891
3892 static int SearchRegExpNoCaptureMultiple(
3893 Isolate* isolate, 3670 Isolate* isolate,
3894 Handle<String> subject, 3671 Handle<String> subject,
3895 Handle<JSRegExp> regexp, 3672 Handle<JSRegExp> regexp,
3896 Handle<JSArray> last_match_array, 3673 Handle<JSArray> last_match_array,
3897 FixedArrayBuilder* builder) { 3674 FixedArrayBuilder* builder) {
3898 ASSERT(subject->IsFlat()); 3675 ASSERT(subject->IsFlat());
3899 ASSERT(regexp->CaptureCount() == 0); 3676 ASSERT_NE(has_capture, regexp->CaptureCount() == 0);
3677
3678 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
3679 if (global_cache.HasException()) return RegExpImpl::RE_EXCEPTION;
3680
3681 int capture_count = regexp->CaptureCount();
3682 int subject_length = subject->length();
3683
3684 // Position to search from.
3900 int match_start = -1; 3685 int match_start = -1;
3901 int match_end = 0; 3686 int match_end = 0;
3902 int pos = 0; 3687 bool first = true;
3903 int registers_per_match = RegExpImpl::IrregexpPrepare(regexp, subject);
3904 if (registers_per_match < 0) return RegExpImpl::RE_EXCEPTION;
3905 3688
3906 int max_matches; 3689 // Two smis before and after the match, for very long strings.
3907 int num_registers = RegExpImpl::GlobalOffsetsVectorSize(regexp, 3690 static const int kMaxBuilderEntriesPerRegExpMatch = 5;
3908 registers_per_match, 3691
3909 &max_matches); 3692 while (true) {
3910 OffsetsVector registers(num_registers, isolate); 3693 int32_t* current_match = global_cache.FetchNext();
3911 Vector<int32_t> register_vector(registers.vector(), registers.length()); 3694 if (current_match == NULL) break;
3912 int subject_length = subject->length(); 3695 match_start = current_match[0];
3913 bool first = true; 3696 builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
3914 for (;;) { // Break on failure, return on exception. 3697 if (match_end < match_start) {
3915 int num_matches = RegExpImpl::IrregexpExecRaw(regexp, 3698 ReplacementStringBuilder::AddSubjectSlice(builder,
3916 subject, 3699 match_end,
3917 pos, 3700 match_start);
3918 register_vector); 3701 }
3919 if (num_matches > 0) { 3702 match_end = current_match[1];
3920 for (int match_index = 0; match_index < num_matches; match_index++) { 3703 {
3921 int32_t* current_match = &register_vector[match_index * 2]; 3704 // Avoid accumulating new handles inside loop.
3922 match_start = current_match[0]; 3705 HandleScope temp_scope(isolate);
3923 builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); 3706 Handle<String> match;
3924 if (match_end < match_start) { 3707 if (!first) {
3925 ReplacementStringBuilder::AddSubjectSlice(builder, 3708 match = isolate->factory()->NewProperSubString(subject,
3926 match_end, 3709 match_start,
3927 match_start); 3710 match_end);
3928 } 3711 } else {
3929 match_end = current_match[1]; 3712 match = isolate->factory()->NewSubString(subject,
3930 HandleScope loop_scope(isolate); 3713 match_start,
3931 if (!first) { 3714 match_end);
3932 builder->Add(*isolate->factory()->NewProperSubString(subject, 3715 first = false;
3933 match_start,
3934 match_end));
3935 } else {
3936 builder->Add(*isolate->factory()->NewSubString(subject,
3937 match_start,
3938 match_end));
3939 first = false;
3940 }
3941 } 3716 }
3942 3717
3943 // If we did not get the maximum number of matches, we can stop here 3718 if (has_capture) {
3944 // since there are no matches left. 3719 // Arguments array to replace function is match, captures, index and
3945 if (num_matches < max_matches) break; 3720 // subject, i.e., 3 + capture count in total.
3721 Handle<FixedArray> elements =
3722 isolate->factory()->NewFixedArray(3 + capture_count);
3946 3723
3947 if (match_start != match_end) { 3724 elements->set(0, *match);
3948 pos = match_end; 3725 for (int i = 1; i <= capture_count; i++) {
3726 int start = current_match[i * 2];
3727 if (start >= 0) {
3728 int end = current_match[i * 2 + 1];
3729 ASSERT(start <= end);
3730 Handle<String> substring =
3731 isolate->factory()->NewSubString(subject, start, end);
3732 elements->set(i, *substring);
3733 } else {
3734 ASSERT(current_match[i * 2 + 1] < 0);
3735 elements->set(i, isolate->heap()->undefined_value());
3736 }
3737 }
3738 elements->set(capture_count + 1, Smi::FromInt(match_start));
3739 elements->set(capture_count + 2, *subject);
3740 builder->Add(*isolate->factory()->NewJSArrayWithElements(elements));
3949 } else { 3741 } else {
3950 pos = match_end + 1; 3742 builder->Add(*match);
3951 if (pos > subject_length) break;
3952 } 3743 }
3953 } else if (num_matches == 0) {
3954 break;
3955 } else {
3956 ASSERT_EQ(num_matches, RegExpImpl::RE_EXCEPTION);
3957 return RegExpImpl::RE_EXCEPTION;
3958 } 3744 }
3959 } 3745 }
3960 3746
3747 if (global_cache.HasException()) return RegExpImpl::RE_EXCEPTION;
3748
3961 if (match_start >= 0) { 3749 if (match_start >= 0) {
3750 // Finished matching, with at least one match.
3962 if (match_end < subject_length) { 3751 if (match_end < subject_length) {
3963 ReplacementStringBuilder::AddSubjectSlice(builder, 3752 ReplacementStringBuilder::AddSubjectSlice(builder,
3964 match_end, 3753 match_end,
3965 subject_length); 3754 subject_length);
3966 } 3755 }
3967 SetLastMatchInfoNoCaptures(subject, 3756
3968 last_match_array, 3757 RegExpImpl::SetLastMatchInfo(
3969 match_start, 3758 last_match_array, subject, capture_count, NULL);
3970 match_end); 3759
3971 return RegExpImpl::RE_SUCCESS; 3760 return RegExpImpl::RE_SUCCESS;
3972 } else { 3761 } else {
3973 return RegExpImpl::RE_FAILURE; // No matches at all. 3762 return RegExpImpl::RE_FAILURE; // No matches at all.
3974 } 3763 }
3975 } 3764 }
3976 3765
3977 3766
3978 // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
3979 // separate last match info. See comment on that function.
3980 static int SearchRegExpMultiple(
3981 Isolate* isolate,
3982 Handle<String> subject,
3983 Handle<JSRegExp> regexp,
3984 Handle<JSArray> last_match_array,
3985 FixedArrayBuilder* builder,
3986 Zone* zone) {
3987
3988 ASSERT(subject->IsFlat());
3989 int registers_per_match = RegExpImpl::IrregexpPrepare(regexp, subject);
3990 if (registers_per_match < 0) return RegExpImpl::RE_EXCEPTION;
3991
3992 int max_matches;
3993 int num_registers = RegExpImpl::GlobalOffsetsVectorSize(regexp,
3994 registers_per_match,
3995 &max_matches);
3996 OffsetsVector registers(num_registers, isolate);
3997 Vector<int32_t> register_vector(registers.vector(), registers.length());
3998
3999 int num_matches = RegExpImpl::IrregexpExecRaw(regexp,
4000 subject,
4001 0,
4002 register_vector);
4003
4004 int capture_count = regexp->CaptureCount();
4005 int subject_length = subject->length();
4006
4007 // Position to search from.
4008 int pos = 0;
4009 // End of previous match. Differs from pos if match was empty.
4010 int match_end = 0;
4011 bool first = true;
4012
4013 if (num_matches > 0) {
4014 do {
4015 int match_start = 0;
4016 for (int match_index = 0; match_index < num_matches; match_index++) {
4017 int32_t* current_match =
4018 &register_vector[match_index * registers_per_match];
4019 match_start = current_match[0];
4020 builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
4021 if (match_end < match_start) {
4022 ReplacementStringBuilder::AddSubjectSlice(builder,
4023 match_end,
4024 match_start);
4025 }
4026 match_end = current_match[1];
4027
4028 {
4029 // Avoid accumulating new handles inside loop.
4030 HandleScope temp_scope(isolate);
4031 // Arguments array to replace function is match, captures, index and
4032 // subject, i.e., 3 + capture count in total.
4033 Handle<FixedArray> elements =
4034 isolate->factory()->NewFixedArray(3 + capture_count);
4035 Handle<String> match;
4036 if (!first) {
4037 match = isolate->factory()->NewProperSubString(subject,
4038 match_start,
4039 match_end);
4040 } else {
4041 match = isolate->factory()->NewSubString(subject,
4042 match_start,
4043 match_end);
4044 }
4045 elements->set(0, *match);
4046 for (int i = 1; i <= capture_count; i++) {
4047 int start = current_match[i * 2];
4048 if (start >= 0) {
4049 int end = current_match[i * 2 + 1];
4050 ASSERT(start <= end);
4051 Handle<String> substring;
4052 if (!first) {
4053 substring =
4054 isolate->factory()->NewProperSubString(subject, start, end);
4055 } else {
4056 substring =
4057 isolate->factory()->NewSubString(subject, start, end);
4058 }
4059 elements->set(i, *substring);
4060 } else {
4061 ASSERT(current_match[i * 2 + 1] < 0);
4062 elements->set(i, isolate->heap()->undefined_value());
4063 }
4064 }
4065 elements->set(capture_count + 1, Smi::FromInt(match_start));
4066 elements->set(capture_count + 2, *subject);
4067 builder->Add(*isolate->factory()->NewJSArrayWithElements(elements));
4068 }
4069 first = false;
4070 }
4071
4072 // If we did not get the maximum number of matches, we can stop here
4073 // since there are no matches left.
4074 if (num_matches < max_matches) break;
4075
4076 if (match_end > match_start) {
4077 pos = match_end;
4078 } else {
4079 pos = match_end + 1;
4080 if (pos > subject_length) {
4081 break;
4082 }
4083 }
4084
4085 num_matches = RegExpImpl::IrregexpExecRaw(regexp,
4086 subject,
4087 pos,
4088 register_vector);
4089 } while (num_matches > 0);
4090
4091 if (num_matches != RegExpImpl::RE_EXCEPTION) {
4092 // Finished matching, with at least one match.
4093 if (match_end < subject_length) {
4094 ReplacementStringBuilder::AddSubjectSlice(builder,
4095 match_end,
4096 subject_length);
4097 }
4098
4099 int last_match_capture_count = (capture_count + 1) * 2;
4100 int last_match_array_size =
4101 last_match_capture_count + RegExpImpl::kLastMatchOverhead;
4102 last_match_array->EnsureSize(last_match_array_size);
4103 AssertNoAllocation no_gc;
4104 FixedArray* elements = FixedArray::cast(last_match_array->elements());
4105 // We have to set this even though the rest of the last match array is
4106 // ignored.
4107 RegExpImpl::SetLastCaptureCount(elements, last_match_capture_count);
4108 // These are also read without consulting the override.
4109 RegExpImpl::SetLastSubject(elements, *subject);
4110 RegExpImpl::SetLastInput(elements, *subject);
4111 return RegExpImpl::RE_SUCCESS;
4112 }
4113 }
4114 // No matches at all, return failure or exception result directly.
4115 return num_matches;
4116 }
4117
4118
4119 // This is only called for StringReplaceGlobalRegExpWithFunction. This sets 3767 // This is only called for StringReplaceGlobalRegExpWithFunction. This sets
4120 // lastMatchInfoOverride to maintain the last match info, so we don't need to 3768 // lastMatchInfoOverride to maintain the last match info, so we don't need to
4121 // set any other last match array info. 3769 // set any other last match array info.
4122 RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) { 3770 RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) {
4123 ASSERT(args.length() == 4); 3771 ASSERT(args.length() == 4);
4124 HandleScope handles(isolate); 3772 HandleScope handles(isolate);
4125 3773
4126 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); 3774 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
4127 if (!subject->IsFlat()) FlattenString(subject); 3775 if (!subject->IsFlat()) FlattenString(subject);
4128 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); 3776 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
4129 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2); 3777 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
4130 CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3); 3778 CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
4131 3779
4132 ASSERT(last_match_info->HasFastObjectElements()); 3780 ASSERT(last_match_info->HasFastObjectElements());
4133 ASSERT(regexp->GetFlags().is_global()); 3781 ASSERT(regexp->GetFlags().is_global());
4134 Handle<FixedArray> result_elements; 3782 Handle<FixedArray> result_elements;
4135 if (result_array->HasFastObjectElements()) { 3783 if (result_array->HasFastObjectElements()) {
4136 result_elements = 3784 result_elements =
4137 Handle<FixedArray>(FixedArray::cast(result_array->elements())); 3785 Handle<FixedArray>(FixedArray::cast(result_array->elements()));
4138 } 3786 }
4139 if (result_elements.is_null() || result_elements->length() < 16) { 3787 if (result_elements.is_null() || result_elements->length() < 16) {
4140 result_elements = isolate->factory()->NewFixedArrayWithHoles(16); 3788 result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
4141 } 3789 }
4142 FixedArrayBuilder builder(result_elements); 3790 FixedArrayBuilder builder(result_elements);
4143 3791
4144 if (regexp->TypeTag() == JSRegExp::ATOM) { 3792 int result;
4145 Handle<String> pattern( 3793 if (regexp->CaptureCount() == 0) {
4146 String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex))); 3794 result = SearchRegExpMultiple<false>(
4147 ASSERT(pattern->IsFlat()); 3795 isolate, subject, regexp, last_match_info, &builder);
4148 if (SearchStringMultiple(isolate, subject, pattern, 3796 } else {
4149 last_match_info, &builder)) { 3797 result = SearchRegExpMultiple<true>(
4150 return *builder.ToJSArray(result_array); 3798 isolate, subject, regexp, last_match_info, &builder);
4151 }
4152 return isolate->heap()->null_value();
4153 } 3799 }
4154 3800
4155 ASSERT_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
4156
4157 int result;
4158 if (regexp->CaptureCount() == 0) {
4159 result = SearchRegExpNoCaptureMultiple(isolate,
4160 subject,
4161 regexp,
4162 last_match_info,
4163 &builder);
4164 } else {
4165 result = SearchRegExpMultiple(isolate,
4166 subject,
4167 regexp,
4168 last_match_info,
4169 &builder,
4170 isolate->runtime_zone());
4171 }
4172 if (result == RegExpImpl::RE_SUCCESS) return *builder.ToJSArray(result_array); 3801 if (result == RegExpImpl::RE_SUCCESS) return *builder.ToJSArray(result_array);
4173 if (result == RegExpImpl::RE_FAILURE) return isolate->heap()->null_value(); 3802 if (result == RegExpImpl::RE_FAILURE) return isolate->heap()->null_value();
4174 ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION); 3803 ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION);
4175 return Failure::Exception(); 3804 return Failure::Exception();
4176 } 3805 }
4177 3806
4178 3807
4179 RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) { 3808 RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) {
4180 NoHandleAllocation ha; 3809 NoHandleAllocation ha;
4181 ASSERT(args.length() == 2); 3810 ASSERT(args.length() == 2);
(...skipping 3991 matching lines...) Expand 10 before | Expand all | Expand 10 after
8173 // called using 'new' and creates a new JSFunction object that 7802 // called using 'new' and creates a new JSFunction object that
8174 // is returned. The receiver object is only used for error 7803 // is returned. The receiver object is only used for error
8175 // reporting if an error occurs when constructing the new 7804 // reporting if an error occurs when constructing the new
8176 // JSFunction. FACTORY->NewJSObject() should not be used to 7805 // JSFunction. FACTORY->NewJSObject() should not be used to
8177 // allocate JSFunctions since it does not properly initialize 7806 // allocate JSFunctions since it does not properly initialize
8178 // the shared part of the function. Since the receiver is 7807 // the shared part of the function. Since the receiver is
8179 // ignored anyway, we use the global object as the receiver 7808 // ignored anyway, we use the global object as the receiver
8180 // instead of a new JSFunction object. This way, errors are 7809 // instead of a new JSFunction object. This way, errors are
8181 // reported the same way whether or not 'Function' is called 7810 // reported the same way whether or not 'Function' is called
8182 // using 'new'. 7811 // using 'new'.
8183 return isolate->context()->global_object(); 7812 return isolate->context()->global();
8184 } 7813 }
8185 } 7814 }
8186 7815
8187 // The function should be compiled for the optimization hints to be 7816 // The function should be compiled for the optimization hints to be
8188 // available. 7817 // available.
8189 JSFunction::EnsureCompiled(function, CLEAR_EXCEPTION); 7818 JSFunction::EnsureCompiled(function, CLEAR_EXCEPTION);
8190 7819
8191 Handle<SharedFunctionInfo> shared(function->shared(), isolate); 7820 Handle<SharedFunctionInfo> shared(function->shared(), isolate);
8192 if (!function->has_initial_map() && 7821 if (!function->has_initial_map() &&
8193 shared->IsInobjectSlackTrackingInProgress()) { 7822 shared->IsInobjectSlackTrackingInProgress()) {
(...skipping 582 matching lines...) Expand 10 before | Expand all | Expand 10 after
8776 } else { 8405 } else {
8777 return maybe_js_object; 8406 return maybe_js_object;
8778 } 8407 }
8779 } 8408 }
8780 } 8409 }
8781 8410
8782 JSFunction* function; 8411 JSFunction* function;
8783 if (args[1]->IsSmi()) { 8412 if (args[1]->IsSmi()) {
8784 // A smi sentinel indicates a context nested inside global code rather 8413 // A smi sentinel indicates a context nested inside global code rather
8785 // than some function. There is a canonical empty function that can be 8414 // than some function. There is a canonical empty function that can be
8786 // gotten from the native context. 8415 // gotten from the global context.
8787 function = isolate->context()->native_context()->closure(); 8416 function = isolate->context()->global_context()->closure();
8788 } else { 8417 } else {
8789 function = JSFunction::cast(args[1]); 8418 function = JSFunction::cast(args[1]);
8790 } 8419 }
8791 8420
8792 Context* context; 8421 Context* context;
8793 MaybeObject* maybe_context = 8422 MaybeObject* maybe_context =
8794 isolate->heap()->AllocateWithContext(function, 8423 isolate->heap()->AllocateWithContext(function,
8795 isolate->context(), 8424 isolate->context(),
8796 extension_object); 8425 extension_object);
8797 if (!maybe_context->To(&context)) return maybe_context; 8426 if (!maybe_context->To(&context)) return maybe_context;
8798 isolate->set_context(context); 8427 isolate->set_context(context);
8799 return context; 8428 return context;
8800 } 8429 }
8801 8430
8802 8431
8803 RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) { 8432 RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) {
8804 NoHandleAllocation ha; 8433 NoHandleAllocation ha;
8805 ASSERT(args.length() == 3); 8434 ASSERT(args.length() == 3);
8806 String* name = String::cast(args[0]); 8435 String* name = String::cast(args[0]);
8807 Object* thrown_object = args[1]; 8436 Object* thrown_object = args[1];
8808 JSFunction* function; 8437 JSFunction* function;
8809 if (args[2]->IsSmi()) { 8438 if (args[2]->IsSmi()) {
8810 // A smi sentinel indicates a context nested inside global code rather 8439 // A smi sentinel indicates a context nested inside global code rather
8811 // than some function. There is a canonical empty function that can be 8440 // than some function. There is a canonical empty function that can be
8812 // gotten from the native context. 8441 // gotten from the global context.
8813 function = isolate->context()->native_context()->closure(); 8442 function = isolate->context()->global_context()->closure();
8814 } else { 8443 } else {
8815 function = JSFunction::cast(args[2]); 8444 function = JSFunction::cast(args[2]);
8816 } 8445 }
8817 Context* context; 8446 Context* context;
8818 MaybeObject* maybe_context = 8447 MaybeObject* maybe_context =
8819 isolate->heap()->AllocateCatchContext(function, 8448 isolate->heap()->AllocateCatchContext(function,
8820 isolate->context(), 8449 isolate->context(),
8821 name, 8450 name,
8822 thrown_object); 8451 thrown_object);
8823 if (!maybe_context->To(&context)) return maybe_context; 8452 if (!maybe_context->To(&context)) return maybe_context;
8824 isolate->set_context(context); 8453 isolate->set_context(context);
8825 return context; 8454 return context;
8826 } 8455 }
8827 8456
8828 8457
8829 RUNTIME_FUNCTION(MaybeObject*, Runtime_PushBlockContext) { 8458 RUNTIME_FUNCTION(MaybeObject*, Runtime_PushBlockContext) {
8830 NoHandleAllocation ha; 8459 NoHandleAllocation ha;
8831 ASSERT(args.length() == 2); 8460 ASSERT(args.length() == 2);
8832 ScopeInfo* scope_info = ScopeInfo::cast(args[0]); 8461 ScopeInfo* scope_info = ScopeInfo::cast(args[0]);
8833 JSFunction* function; 8462 JSFunction* function;
8834 if (args[1]->IsSmi()) { 8463 if (args[1]->IsSmi()) {
8835 // A smi sentinel indicates a context nested inside global code rather 8464 // A smi sentinel indicates a context nested inside global code rather
8836 // than some function. There is a canonical empty function that can be 8465 // than some function. There is a canonical empty function that can be
8837 // gotten from the native context. 8466 // gotten from the global context.
8838 function = isolate->context()->native_context()->closure(); 8467 function = isolate->context()->global_context()->closure();
8839 } else { 8468 } else {
8840 function = JSFunction::cast(args[1]); 8469 function = JSFunction::cast(args[1]);
8841 } 8470 }
8842 Context* context; 8471 Context* context;
8843 MaybeObject* maybe_context = 8472 MaybeObject* maybe_context =
8844 isolate->heap()->AllocateBlockContext(function, 8473 isolate->heap()->AllocateBlockContext(function,
8845 isolate->context(), 8474 isolate->context(),
8846 scope_info); 8475 scope_info);
8847 if (!maybe_context->To(&context)) return maybe_context; 8476 if (!maybe_context->To(&context)) return maybe_context;
8848 isolate->set_context(context); 8477 isolate->set_context(context);
(...skipping 12 matching lines...) Expand all
8861 NoHandleAllocation ha; 8490 NoHandleAllocation ha;
8862 ASSERT(args.length() == 1); 8491 ASSERT(args.length() == 1);
8863 CONVERT_ARG_HANDLE_CHECKED(JSModule, instance, 0); 8492 CONVERT_ARG_HANDLE_CHECKED(JSModule, instance, 0);
8864 8493
8865 Context* context = Context::cast(instance->context()); 8494 Context* context = Context::cast(instance->context());
8866 Context* previous = isolate->context(); 8495 Context* previous = isolate->context();
8867 ASSERT(context->IsModuleContext()); 8496 ASSERT(context->IsModuleContext());
8868 // Initialize the context links. 8497 // Initialize the context links.
8869 context->set_previous(previous); 8498 context->set_previous(previous);
8870 context->set_closure(previous->closure()); 8499 context->set_closure(previous->closure());
8871 context->set_global_object(previous->global_object()); 8500 context->set_global(previous->global());
8872 isolate->set_context(context); 8501 isolate->set_context(context);
8873 8502
8874 return context; 8503 return context;
8875 } 8504 }
8876 8505
8877 8506
8878 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) { 8507 RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) {
8879 HandleScope scope(isolate); 8508 HandleScope scope(isolate);
8880 ASSERT(args.length() == 2); 8509 ASSERT(args.length() == 2);
8881 8510
(...skipping 65 matching lines...) Expand 10 before | Expand all | Expand 10 after
8947 return x->IsTheHole() ? heap->undefined_value() : x; 8576 return x->IsTheHole() ? heap->undefined_value() : x;
8948 } 8577 }
8949 8578
8950 8579
8951 static Object* ComputeReceiverForNonGlobal(Isolate* isolate, 8580 static Object* ComputeReceiverForNonGlobal(Isolate* isolate,
8952 JSObject* holder) { 8581 JSObject* holder) {
8953 ASSERT(!holder->IsGlobalObject()); 8582 ASSERT(!holder->IsGlobalObject());
8954 Context* top = isolate->context(); 8583 Context* top = isolate->context();
8955 // Get the context extension function. 8584 // Get the context extension function.
8956 JSFunction* context_extension_function = 8585 JSFunction* context_extension_function =
8957 top->native_context()->context_extension_function(); 8586 top->global_context()->context_extension_function();
8958 // If the holder isn't a context extension object, we just return it 8587 // If the holder isn't a context extension object, we just return it
8959 // as the receiver. This allows arguments objects to be used as 8588 // as the receiver. This allows arguments objects to be used as
8960 // receivers, but only if they are put in the context scope chain 8589 // receivers, but only if they are put in the context scope chain
8961 // explicitly via a with-statement. 8590 // explicitly via a with-statement.
8962 Object* constructor = holder->map()->constructor(); 8591 Object* constructor = holder->map()->constructor();
8963 if (constructor != context_extension_function) return holder; 8592 if (constructor != context_extension_function) return holder;
8964 // Fall back to using the global object as the implicit receiver if 8593 // Fall back to using the global object as the implicit receiver if
8965 // the property turns out to be a local variable allocated in a 8594 // the property turns out to be a local variable allocated in a
8966 // context extension object - introduced via eval. Implicit global 8595 // context extension object - introduced via eval. Implicit global
8967 // receivers are indicated with the hole value. 8596 // receivers are indicated with the hole value.
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after
9126 8755
9127 if (strict_mode == kStrictMode) { 8756 if (strict_mode == kStrictMode) {
9128 // Throw in strict mode (assignment to undefined variable). 8757 // Throw in strict mode (assignment to undefined variable).
9129 Handle<Object> error = 8758 Handle<Object> error =
9130 isolate->factory()->NewReferenceError( 8759 isolate->factory()->NewReferenceError(
9131 "not_defined", HandleVector(&name, 1)); 8760 "not_defined", HandleVector(&name, 1));
9132 return isolate->Throw(*error); 8761 return isolate->Throw(*error);
9133 } 8762 }
9134 // In non-strict mode, the property is added to the global object. 8763 // In non-strict mode, the property is added to the global object.
9135 attributes = NONE; 8764 attributes = NONE;
9136 object = Handle<JSObject>(isolate->context()->global_object()); 8765 object = Handle<JSObject>(isolate->context()->global());
9137 } 8766 }
9138 8767
9139 // Set the property if it's not read only or doesn't yet exist. 8768 // Set the property if it's not read only or doesn't yet exist.
9140 if ((attributes & READ_ONLY) == 0 || 8769 if ((attributes & READ_ONLY) == 0 ||
9141 (object->GetLocalPropertyAttribute(*name) == ABSENT)) { 8770 (object->GetLocalPropertyAttribute(*name) == ABSENT)) {
9142 RETURN_IF_EMPTY_HANDLE( 8771 RETURN_IF_EMPTY_HANDLE(
9143 isolate, 8772 isolate,
9144 JSReceiver::SetProperty(object, name, value, NONE, strict_mode)); 8773 JSReceiver::SetProperty(object, name, value, NONE, strict_mode));
9145 } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) { 8774 } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) {
9146 // Setting read only property in strict mode. 8775 // Setting read only property in strict mode.
(...skipping 262 matching lines...) Expand 10 before | Expand all | Expand 10 after
9409 return callback(v8::Utils::ToLocal(context)); 9038 return callback(v8::Utils::ToLocal(context));
9410 } 9039 }
9411 } 9040 }
9412 9041
9413 9042
9414 RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) { 9043 RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) {
9415 HandleScope scope(isolate); 9044 HandleScope scope(isolate);
9416 ASSERT_EQ(1, args.length()); 9045 ASSERT_EQ(1, args.length());
9417 CONVERT_ARG_HANDLE_CHECKED(String, source, 0); 9046 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9418 9047
9419 // Extract native context. 9048 // Extract global context.
9420 Handle<Context> context(isolate->context()->native_context()); 9049 Handle<Context> context(isolate->context()->global_context());
9421 9050
9422 // Check if native context allows code generation from 9051 // Check if global context allows code generation from
9423 // strings. Throw an exception if it doesn't. 9052 // strings. Throw an exception if it doesn't.
9424 if (context->allow_code_gen_from_strings()->IsFalse() && 9053 if (context->allow_code_gen_from_strings()->IsFalse() &&
9425 !CodeGenerationFromStringsAllowed(isolate, context)) { 9054 !CodeGenerationFromStringsAllowed(isolate, context)) {
9426 return isolate->Throw(*isolate->factory()->NewError( 9055 return isolate->Throw(*isolate->factory()->NewError(
9427 "code_gen_from_strings", HandleVector<Object>(NULL, 0))); 9056 "code_gen_from_strings", HandleVector<Object>(NULL, 0)));
9428 } 9057 }
9429 9058
9430 // Compile source string in the native context. 9059 // Compile source string in the global context.
9431 Handle<SharedFunctionInfo> shared = Compiler::CompileEval( 9060 Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
9432 source, context, true, CLASSIC_MODE, RelocInfo::kNoPosition); 9061 source, context, true, CLASSIC_MODE, RelocInfo::kNoPosition);
9433 if (shared.is_null()) return Failure::Exception(); 9062 if (shared.is_null()) return Failure::Exception();
9434 Handle<JSFunction> fun = 9063 Handle<JSFunction> fun =
9435 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, 9064 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
9436 context, 9065 context,
9437 NOT_TENURED); 9066 NOT_TENURED);
9438 return *fun; 9067 return *fun;
9439 } 9068 }
9440 9069
9441 9070
9442 static ObjectPair CompileGlobalEval(Isolate* isolate, 9071 static ObjectPair CompileGlobalEval(Isolate* isolate,
9443 Handle<String> source, 9072 Handle<String> source,
9444 Handle<Object> receiver, 9073 Handle<Object> receiver,
9445 LanguageMode language_mode, 9074 LanguageMode language_mode,
9446 int scope_position) { 9075 int scope_position) {
9447 Handle<Context> context = Handle<Context>(isolate->context()); 9076 Handle<Context> context = Handle<Context>(isolate->context());
9448 Handle<Context> native_context = Handle<Context>(context->native_context()); 9077 Handle<Context> global_context = Handle<Context>(context->global_context());
9449 9078
9450 // Check if native context allows code generation from 9079 // Check if global context allows code generation from
9451 // strings. Throw an exception if it doesn't. 9080 // strings. Throw an exception if it doesn't.
9452 if (native_context->allow_code_gen_from_strings()->IsFalse() && 9081 if (global_context->allow_code_gen_from_strings()->IsFalse() &&
9453 !CodeGenerationFromStringsAllowed(isolate, native_context)) { 9082 !CodeGenerationFromStringsAllowed(isolate, global_context)) {
9454 isolate->Throw(*isolate->factory()->NewError( 9083 isolate->Throw(*isolate->factory()->NewError(
9455 "code_gen_from_strings", HandleVector<Object>(NULL, 0))); 9084 "code_gen_from_strings", HandleVector<Object>(NULL, 0)));
9456 return MakePair(Failure::Exception(), NULL); 9085 return MakePair(Failure::Exception(), NULL);
9457 } 9086 }
9458 9087
9459 // Deal with a normal eval call with a string argument. Compile it 9088 // Deal with a normal eval call with a string argument. Compile it
9460 // and return the compiled function bound in the local context. 9089 // and return the compiled function bound in the local context.
9461 Handle<SharedFunctionInfo> shared = Compiler::CompileEval( 9090 Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
9462 source, 9091 source,
9463 Handle<Context>(isolate->context()), 9092 Handle<Context>(isolate->context()),
9464 context->IsNativeContext(), 9093 context->IsGlobalContext(),
9465 language_mode, 9094 language_mode,
9466 scope_position); 9095 scope_position);
9467 if (shared.is_null()) return MakePair(Failure::Exception(), NULL); 9096 if (shared.is_null()) return MakePair(Failure::Exception(), NULL);
9468 Handle<JSFunction> compiled = 9097 Handle<JSFunction> compiled =
9469 isolate->factory()->NewFunctionFromSharedFunctionInfo( 9098 isolate->factory()->NewFunctionFromSharedFunctionInfo(
9470 shared, context, NOT_TENURED); 9099 shared, context, NOT_TENURED);
9471 return MakePair(*compiled, *receiver); 9100 return MakePair(*compiled, *receiver);
9472 } 9101 }
9473 9102
9474 9103
9475 RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) { 9104 RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) {
9476 ASSERT(args.length() == 5); 9105 ASSERT(args.length() == 5);
9477 9106
9478 HandleScope scope(isolate); 9107 HandleScope scope(isolate);
9479 Handle<Object> callee = args.at<Object>(0); 9108 Handle<Object> callee = args.at<Object>(0);
9480 9109
9481 // If "eval" didn't refer to the original GlobalEval, it's not a 9110 // If "eval" didn't refer to the original GlobalEval, it's not a
9482 // direct call to eval. 9111 // direct call to eval.
9483 // (And even if it is, but the first argument isn't a string, just let 9112 // (And even if it is, but the first argument isn't a string, just let
9484 // execution default to an indirect call to eval, which will also return 9113 // execution default to an indirect call to eval, which will also return
9485 // the first argument without doing anything). 9114 // the first argument without doing anything).
9486 if (*callee != isolate->native_context()->global_eval_fun() || 9115 if (*callee != isolate->global_context()->global_eval_fun() ||
9487 !args[1]->IsString()) { 9116 !args[1]->IsString()) {
9488 return MakePair(*callee, isolate->heap()->the_hole_value()); 9117 return MakePair(*callee, isolate->heap()->the_hole_value());
9489 } 9118 }
9490 9119
9491 CONVERT_LANGUAGE_MODE_ARG(language_mode, 3); 9120 CONVERT_LANGUAGE_MODE_ARG(language_mode, 3);
9492 ASSERT(args[4]->IsSmi()); 9121 ASSERT(args[4]->IsSmi());
9493 return CompileGlobalEval(isolate, 9122 return CompileGlobalEval(isolate,
9494 args.at<String>(1), 9123 args.at<String>(1),
9495 args.at<Object>(2), 9124 args.at<Object>(2),
9496 language_mode, 9125 language_mode,
(...skipping 884 matching lines...) Expand 10 before | Expand all | Expand 10 after
10381 10010
10382 ASSERT(args.length() == 2); 10011 ASSERT(args.length() == 2);
10383 10012
10384 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); 10013 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
10385 CONVERT_ARG_HANDLE_CHECKED(String, name, 1); 10014 CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
10386 10015
10387 // Make sure to set the current context to the context before the debugger was 10016 // Make sure to set the current context to the context before the debugger was
10388 // entered (if the debugger is entered). The reason for switching context here 10017 // entered (if the debugger is entered). The reason for switching context here
10389 // is that for some property lookups (accessors and interceptors) callbacks 10018 // is that for some property lookups (accessors and interceptors) callbacks
10390 // into the embedding application can occour, and the embedding application 10019 // into the embedding application can occour, and the embedding application
10391 // could have the assumption that its own native context is the current 10020 // could have the assumption that its own global context is the current
10392 // context and not some internal debugger context. 10021 // context and not some internal debugger context.
10393 SaveContext save(isolate); 10022 SaveContext save(isolate);
10394 if (isolate->debug()->InDebugger()) { 10023 if (isolate->debug()->InDebugger()) {
10395 isolate->set_context(*isolate->debug()->debugger_entry()->GetContext()); 10024 isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
10396 } 10025 }
10397 10026
10398 // Skip the global proxy as it has no properties and always delegates to the 10027 // Skip the global proxy as it has no properties and always delegates to the
10399 // real global object. 10028 // real global object.
10400 if (obj->IsJSGlobalProxy()) { 10029 if (obj->IsJSGlobalProxy()) {
10401 obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); 10030 obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
(...skipping 524 matching lines...) Expand 10 before | Expand all | Expand 10 after
10926 // THE FRAME ITERATOR TO WRAP THE RECEIVER. 10555 // THE FRAME ITERATOR TO WRAP THE RECEIVER.
10927 Handle<Object> receiver(it.frame()->receiver(), isolate); 10556 Handle<Object> receiver(it.frame()->receiver(), isolate);
10928 if (!receiver->IsJSObject() && 10557 if (!receiver->IsJSObject() &&
10929 shared->is_classic_mode() && 10558 shared->is_classic_mode() &&
10930 !shared->native()) { 10559 !shared->native()) {
10931 // If the receiver is not a JSObject and the function is not a 10560 // If the receiver is not a JSObject and the function is not a
10932 // builtin or strict-mode we have hit an optimization where a 10561 // builtin or strict-mode we have hit an optimization where a
10933 // value object is not converted into a wrapped JS objects. To 10562 // value object is not converted into a wrapped JS objects. To
10934 // hide this optimization from the debugger, we wrap the receiver 10563 // hide this optimization from the debugger, we wrap the receiver
10935 // by creating correct wrapper object based on the calling frame's 10564 // by creating correct wrapper object based on the calling frame's
10936 // native context. 10565 // global context.
10937 it.Advance(); 10566 it.Advance();
10938 Handle<Context> calling_frames_native_context( 10567 Handle<Context> calling_frames_global_context(
10939 Context::cast(Context::cast(it.frame()->context())->native_context())); 10568 Context::cast(Context::cast(it.frame()->context())->global_context()));
10940 receiver = 10569 receiver =
10941 isolate->factory()->ToObject(receiver, calling_frames_native_context); 10570 isolate->factory()->ToObject(receiver, calling_frames_global_context);
10942 } 10571 }
10943 details->set(kFrameDetailsReceiverIndex, *receiver); 10572 details->set(kFrameDetailsReceiverIndex, *receiver);
10944 10573
10945 ASSERT_EQ(details_size, details_index); 10574 ASSERT_EQ(details_size, details_index);
10946 return *isolate->factory()->NewJSArrayWithElements(details); 10575 return *isolate->factory()->NewJSArrayWithElements(details);
10947 } 10576 }
10948 10577
10949 10578
10950 // Copy all the context locals into an object used to materialize a scope. 10579 // Copy all the context locals into an object used to materialize a scope.
10951 static bool CopyContextLocalsToScopeObject( 10580 static bool CopyContextLocalsToScopeObject(
(...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after
11023 Handle<Context> function_context(frame_context->declaration_context()); 10652 Handle<Context> function_context(frame_context->declaration_context());
11024 if (!CopyContextLocalsToScopeObject( 10653 if (!CopyContextLocalsToScopeObject(
11025 isolate, scope_info, function_context, local_scope)) { 10654 isolate, scope_info, function_context, local_scope)) {
11026 return Handle<JSObject>(); 10655 return Handle<JSObject>();
11027 } 10656 }
11028 10657
11029 // Finally copy any properties from the function context extension. 10658 // Finally copy any properties from the function context extension.
11030 // These will be variables introduced by eval. 10659 // These will be variables introduced by eval.
11031 if (function_context->closure() == *function) { 10660 if (function_context->closure() == *function) {
11032 if (function_context->has_extension() && 10661 if (function_context->has_extension() &&
11033 !function_context->IsNativeContext()) { 10662 !function_context->IsGlobalContext()) {
11034 Handle<JSObject> ext(JSObject::cast(function_context->extension())); 10663 Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11035 bool threw = false; 10664 bool threw = false;
11036 Handle<FixedArray> keys = 10665 Handle<FixedArray> keys =
11037 GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw); 10666 GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw);
11038 if (threw) return Handle<JSObject>(); 10667 if (threw) return Handle<JSObject>();
11039 10668
11040 for (int i = 0; i < keys->length(); i++) { 10669 for (int i = 0; i < keys->length(); i++) {
11041 // Names of variables introduced by eval are strings. 10670 // Names of variables introduced by eval are strings.
11042 ASSERT(keys->get(i)->IsString()); 10671 ASSERT(keys->get(i)->IsString());
11043 Handle<String> key(String::cast(keys->get(i))); 10672 Handle<String> key(String::cast(keys->get(i)));
(...skipping 241 matching lines...) Expand 10 before | Expand all | Expand 10 after
11285 } 10914 }
11286 10915
11287 // More scopes? 10916 // More scopes?
11288 bool Done() { return context_.is_null(); } 10917 bool Done() { return context_.is_null(); }
11289 10918
11290 // Move to the next scope. 10919 // Move to the next scope.
11291 void Next() { 10920 void Next() {
11292 ScopeType scope_type = Type(); 10921 ScopeType scope_type = Type();
11293 if (scope_type == ScopeTypeGlobal) { 10922 if (scope_type == ScopeTypeGlobal) {
11294 // The global scope is always the last in the chain. 10923 // The global scope is always the last in the chain.
11295 ASSERT(context_->IsNativeContext()); 10924 ASSERT(context_->IsGlobalContext());
11296 context_ = Handle<Context>(); 10925 context_ = Handle<Context>();
11297 return; 10926 return;
11298 } 10927 }
11299 if (nested_scope_chain_.is_empty()) { 10928 if (nested_scope_chain_.is_empty()) {
11300 context_ = Handle<Context>(context_->previous(), isolate_); 10929 context_ = Handle<Context>(context_->previous(), isolate_);
11301 } else { 10930 } else {
11302 if (nested_scope_chain_.last()->HasContext()) { 10931 if (nested_scope_chain_.last()->HasContext()) {
11303 ASSERT(context_->previous() != NULL); 10932 ASSERT(context_->previous() != NULL);
11304 context_ = Handle<Context>(context_->previous(), isolate_); 10933 context_ = Handle<Context>(context_->previous(), isolate_);
11305 } 10934 }
11306 nested_scope_chain_.RemoveLast(); 10935 nested_scope_chain_.RemoveLast();
11307 } 10936 }
11308 } 10937 }
11309 10938
11310 // Return the type of the current scope. 10939 // Return the type of the current scope.
11311 ScopeType Type() { 10940 ScopeType Type() {
11312 if (!nested_scope_chain_.is_empty()) { 10941 if (!nested_scope_chain_.is_empty()) {
11313 Handle<ScopeInfo> scope_info = nested_scope_chain_.last(); 10942 Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
11314 switch (scope_info->Type()) { 10943 switch (scope_info->Type()) {
11315 case FUNCTION_SCOPE: 10944 case FUNCTION_SCOPE:
11316 ASSERT(context_->IsFunctionContext() || 10945 ASSERT(context_->IsFunctionContext() ||
11317 !scope_info->HasContext()); 10946 !scope_info->HasContext());
11318 return ScopeTypeLocal; 10947 return ScopeTypeLocal;
11319 case MODULE_SCOPE: 10948 case MODULE_SCOPE:
11320 ASSERT(context_->IsModuleContext()); 10949 ASSERT(context_->IsModuleContext());
11321 return ScopeTypeModule; 10950 return ScopeTypeModule;
11322 case GLOBAL_SCOPE: 10951 case GLOBAL_SCOPE:
11323 ASSERT(context_->IsNativeContext()); 10952 ASSERT(context_->IsGlobalContext());
11324 return ScopeTypeGlobal; 10953 return ScopeTypeGlobal;
11325 case WITH_SCOPE: 10954 case WITH_SCOPE:
11326 ASSERT(context_->IsWithContext()); 10955 ASSERT(context_->IsWithContext());
11327 return ScopeTypeWith; 10956 return ScopeTypeWith;
11328 case CATCH_SCOPE: 10957 case CATCH_SCOPE:
11329 ASSERT(context_->IsCatchContext()); 10958 ASSERT(context_->IsCatchContext());
11330 return ScopeTypeCatch; 10959 return ScopeTypeCatch;
11331 case BLOCK_SCOPE: 10960 case BLOCK_SCOPE:
11332 ASSERT(!scope_info->HasContext() || 10961 ASSERT(!scope_info->HasContext() ||
11333 context_->IsBlockContext()); 10962 context_->IsBlockContext());
11334 return ScopeTypeBlock; 10963 return ScopeTypeBlock;
11335 case EVAL_SCOPE: 10964 case EVAL_SCOPE:
11336 UNREACHABLE(); 10965 UNREACHABLE();
11337 } 10966 }
11338 } 10967 }
11339 if (context_->IsNativeContext()) { 10968 if (context_->IsGlobalContext()) {
11340 ASSERT(context_->global_object()->IsGlobalObject()); 10969 ASSERT(context_->global()->IsGlobalObject());
11341 return ScopeTypeGlobal; 10970 return ScopeTypeGlobal;
11342 } 10971 }
11343 if (context_->IsFunctionContext()) { 10972 if (context_->IsFunctionContext()) {
11344 return ScopeTypeClosure; 10973 return ScopeTypeClosure;
11345 } 10974 }
11346 if (context_->IsCatchContext()) { 10975 if (context_->IsCatchContext()) {
11347 return ScopeTypeCatch; 10976 return ScopeTypeCatch;
11348 } 10977 }
11349 if (context_->IsBlockContext()) { 10978 if (context_->IsBlockContext()) {
11350 return ScopeTypeBlock; 10979 return ScopeTypeBlock;
11351 } 10980 }
11352 if (context_->IsModuleContext()) { 10981 if (context_->IsModuleContext()) {
11353 return ScopeTypeModule; 10982 return ScopeTypeModule;
11354 } 10983 }
11355 ASSERT(context_->IsWithContext()); 10984 ASSERT(context_->IsWithContext());
11356 return ScopeTypeWith; 10985 return ScopeTypeWith;
11357 } 10986 }
11358 10987
11359 // Return the JavaScript object with the content of the current scope. 10988 // Return the JavaScript object with the content of the current scope.
11360 Handle<JSObject> ScopeObject() { 10989 Handle<JSObject> ScopeObject() {
11361 switch (Type()) { 10990 switch (Type()) {
11362 case ScopeIterator::ScopeTypeGlobal: 10991 case ScopeIterator::ScopeTypeGlobal:
11363 return Handle<JSObject>(CurrentContext()->global_object()); 10992 return Handle<JSObject>(CurrentContext()->global());
11364 case ScopeIterator::ScopeTypeLocal: 10993 case ScopeIterator::ScopeTypeLocal:
11365 // Materialize the content of the local scope into a JSObject. 10994 // Materialize the content of the local scope into a JSObject.
11366 ASSERT(nested_scope_chain_.length() == 1); 10995 ASSERT(nested_scope_chain_.length() == 1);
11367 return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_); 10996 return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
11368 case ScopeIterator::ScopeTypeWith: 10997 case ScopeIterator::ScopeTypeWith:
11369 // Return the with object. 10998 // Return the with object.
11370 return Handle<JSObject>(JSObject::cast(CurrentContext()->extension())); 10999 return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
11371 case ScopeIterator::ScopeTypeCatch: 11000 case ScopeIterator::ScopeTypeCatch:
11372 return MaterializeCatchScope(isolate_, CurrentContext()); 11001 return MaterializeCatchScope(isolate_, CurrentContext());
11373 case ScopeIterator::ScopeTypeClosure: 11002 case ScopeIterator::ScopeTypeClosure:
(...skipping 844 matching lines...) Expand 10 before | Expand all | Expand 10 after
12218 11847
12219 Handle<String> function_source = 11848 Handle<String> function_source =
12220 isolate->factory()->NewStringFromAscii( 11849 isolate->factory()->NewStringFromAscii(
12221 Vector<const char>(kSourceStr, sizeof(kSourceStr) - 1)); 11850 Vector<const char>(kSourceStr, sizeof(kSourceStr) - 1));
12222 11851
12223 // Currently, the eval code will be executed in non-strict mode, 11852 // Currently, the eval code will be executed in non-strict mode,
12224 // even in the strict code context. 11853 // even in the strict code context.
12225 Handle<SharedFunctionInfo> shared = 11854 Handle<SharedFunctionInfo> shared =
12226 Compiler::CompileEval(function_source, 11855 Compiler::CompileEval(function_source,
12227 context, 11856 context,
12228 context->IsNativeContext(), 11857 context->IsGlobalContext(),
12229 CLASSIC_MODE, 11858 CLASSIC_MODE,
12230 RelocInfo::kNoPosition); 11859 RelocInfo::kNoPosition);
12231 if (shared.is_null()) return Failure::Exception(); 11860 if (shared.is_null()) return Failure::Exception();
12232 Handle<JSFunction> compiled_function = 11861 Handle<JSFunction> compiled_function =
12233 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context); 11862 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context);
12234 11863
12235 // Invoke the result of the compilation to get the evaluation function. 11864 // Invoke the result of the compilation to get the evaluation function.
12236 bool has_pending_exception; 11865 bool has_pending_exception;
12237 Handle<Object> receiver(frame->receiver(), isolate); 11866 Handle<Object> receiver(frame->receiver(), isolate);
12238 Handle<Object> evaluation_function = 11867 Handle<Object> evaluation_function =
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after
12289 // Enter the top context from before the debugger was invoked. 11918 // Enter the top context from before the debugger was invoked.
12290 SaveContext save(isolate); 11919 SaveContext save(isolate);
12291 SaveContext* top = &save; 11920 SaveContext* top = &save;
12292 while (top != NULL && *top->context() == *isolate->debug()->debug_context()) { 11921 while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
12293 top = top->prev(); 11922 top = top->prev();
12294 } 11923 }
12295 if (top != NULL) { 11924 if (top != NULL) {
12296 isolate->set_context(*top->context()); 11925 isolate->set_context(*top->context());
12297 } 11926 }
12298 11927
12299 // Get the native context now set to the top context from before the 11928 // Get the global context now set to the top context from before the
12300 // debugger was invoked. 11929 // debugger was invoked.
12301 Handle<Context> context = isolate->native_context(); 11930 Handle<Context> context = isolate->global_context();
12302 11931
12303 bool is_global = true; 11932 bool is_global = true;
12304 11933
12305 if (additional_context->IsJSObject()) { 11934 if (additional_context->IsJSObject()) {
12306 // Create a new with context with the additional context information between 11935 // Create a new with context with the additional context information between
12307 // the context of the debugged function and the eval code to be executed. 11936 // the context of the debugged function and the eval code to be executed.
12308 context = isolate->factory()->NewWithContext( 11937 context = isolate->factory()->NewWithContext(
12309 Handle<JSFunction>(context->closure()), 11938 Handle<JSFunction>(context->closure()),
12310 context, 11939 context,
12311 Handle<JSObject>::cast(additional_context)); 11940 Handle<JSObject>::cast(additional_context));
(...skipping 10 matching lines...) Expand all
12322 CLASSIC_MODE, 11951 CLASSIC_MODE,
12323 RelocInfo::kNoPosition); 11952 RelocInfo::kNoPosition);
12324 if (shared.is_null()) return Failure::Exception(); 11953 if (shared.is_null()) return Failure::Exception();
12325 Handle<JSFunction> compiled_function = 11954 Handle<JSFunction> compiled_function =
12326 Handle<JSFunction>( 11955 Handle<JSFunction>(
12327 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, 11956 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
12328 context)); 11957 context));
12329 11958
12330 // Invoke the result of the compilation to get the evaluation function. 11959 // Invoke the result of the compilation to get the evaluation function.
12331 bool has_pending_exception; 11960 bool has_pending_exception;
12332 Handle<Object> receiver = isolate->global_object(); 11961 Handle<Object> receiver = isolate->global();
12333 Handle<Object> result = 11962 Handle<Object> result =
12334 Execution::Call(compiled_function, receiver, 0, NULL, 11963 Execution::Call(compiled_function, receiver, 0, NULL,
12335 &has_pending_exception); 11964 &has_pending_exception);
12336 // Clear the oneshot breakpoints so that the debugger does not step further. 11965 // Clear the oneshot breakpoints so that the debugger does not step further.
12337 isolate->debug()->ClearStepping(); 11966 isolate->debug()->ClearStepping();
12338 if (has_pending_exception) return Failure::Exception(); 11967 if (has_pending_exception) return Failure::Exception();
12339 return *result; 11968 return *result;
12340 } 11969 }
12341 11970
12342 11971
(...skipping 113 matching lines...) Expand 10 before | Expand all | Expand 10 after
12456 CONVERT_ARG_CHECKED(JSObject, target, 0); 12085 CONVERT_ARG_CHECKED(JSObject, target, 0);
12457 Object* instance_filter = args[1]; 12086 Object* instance_filter = args[1];
12458 RUNTIME_ASSERT(instance_filter->IsUndefined() || 12087 RUNTIME_ASSERT(instance_filter->IsUndefined() ||
12459 instance_filter->IsJSObject()); 12088 instance_filter->IsJSObject());
12460 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); 12089 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
12461 RUNTIME_ASSERT(max_references >= 0); 12090 RUNTIME_ASSERT(max_references >= 0);
12462 12091
12463 12092
12464 // Get the constructor function for context extension and arguments array. 12093 // Get the constructor function for context extension and arguments array.
12465 JSObject* arguments_boilerplate = 12094 JSObject* arguments_boilerplate =
12466 isolate->context()->native_context()->arguments_boilerplate(); 12095 isolate->context()->global_context()->arguments_boilerplate();
12467 JSFunction* arguments_function = 12096 JSFunction* arguments_function =
12468 JSFunction::cast(arguments_boilerplate->map()->constructor()); 12097 JSFunction::cast(arguments_boilerplate->map()->constructor());
12469 12098
12470 // Get the number of referencing objects. 12099 // Get the number of referencing objects.
12471 int count; 12100 int count;
12472 HeapIterator heap_iterator; 12101 HeapIterator heap_iterator;
12473 count = DebugReferencedBy(&heap_iterator, 12102 count = DebugReferencedBy(&heap_iterator,
12474 target, instance_filter, max_references, 12103 target, instance_filter, max_references,
12475 NULL, 0, arguments_function); 12104 NULL, 0, arguments_function);
12476 12105
12477 // Allocate an array to hold the result. 12106 // Allocate an array to hold the result.
12478 Object* object; 12107 Object* object;
12479 { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count); 12108 { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count);
12480 if (!maybe_object->ToObject(&object)) return maybe_object; 12109 if (!maybe_object->ToObject(&object)) return maybe_object;
12481 } 12110 }
12482 FixedArray* instances = FixedArray::cast(object); 12111 FixedArray* instances = FixedArray::cast(object);
12483 12112
12484 // Fill the referencing objects. 12113 // Fill the referencing objects.
12485 // AllocateFixedArray above does not make the heap non-iterable. 12114 // AllocateFixedArray above does not make the heap non-iterable.
12486 ASSERT(HEAP->IsHeapIterable()); 12115 ASSERT(HEAP->IsHeapIterable());
12487 HeapIterator heap_iterator2; 12116 HeapIterator heap_iterator2;
12488 count = DebugReferencedBy(&heap_iterator2, 12117 count = DebugReferencedBy(&heap_iterator2,
12489 target, instance_filter, max_references, 12118 target, instance_filter, max_references,
12490 instances, count, arguments_function); 12119 instances, count, arguments_function);
12491 12120
12492 // Return result as JS array. 12121 // Return result as JS array.
12493 Object* result; 12122 Object* result;
12494 MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( 12123 MaybeObject* maybe_result = isolate->heap()->AllocateJSObject(
12495 isolate->context()->native_context()->array_function()); 12124 isolate->context()->global_context()->array_function());
12496 if (!maybe_result->ToObject(&result)) return maybe_result; 12125 if (!maybe_result->ToObject(&result)) return maybe_result;
12497 return JSArray::cast(result)->SetContent(instances); 12126 return JSArray::cast(result)->SetContent(instances);
12498 } 12127 }
12499 12128
12500 12129
12501 // Helper function used by Runtime_DebugConstructedBy below. 12130 // Helper function used by Runtime_DebugConstructedBy below.
12502 static int DebugConstructedBy(HeapIterator* iterator, 12131 static int DebugConstructedBy(HeapIterator* iterator,
12503 JSFunction* constructor, 12132 JSFunction* constructor,
12504 int max_references, 12133 int max_references,
12505 FixedArray* instances, 12134 FixedArray* instances,
(...skipping 60 matching lines...) Expand 10 before | Expand all | Expand 10 after
12566 HeapIterator heap_iterator2; 12195 HeapIterator heap_iterator2;
12567 count = DebugConstructedBy(&heap_iterator2, 12196 count = DebugConstructedBy(&heap_iterator2,
12568 constructor, 12197 constructor,
12569 max_references, 12198 max_references,
12570 instances, 12199 instances,
12571 count); 12200 count);
12572 12201
12573 // Return result as JS array. 12202 // Return result as JS array.
12574 Object* result; 12203 Object* result;
12575 { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( 12204 { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject(
12576 isolate->context()->native_context()->array_function()); 12205 isolate->context()->global_context()->array_function());
12577 if (!maybe_result->ToObject(&result)) return maybe_result; 12206 if (!maybe_result->ToObject(&result)) return maybe_result;
12578 } 12207 }
12579 return JSArray::cast(result)->SetContent(instances); 12208 return JSArray::cast(result)->SetContent(instances);
12580 } 12209 }
12581 12210
12582 12211
12583 // Find the effective prototype object as returned by __proto__. 12212 // Find the effective prototype object as returned by __proto__.
12584 // args[0]: the object to find the prototype for. 12213 // args[0]: the object to find the prototype for.
12585 RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) { 12214 RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) {
12586 ASSERT(args.length() == 1); 12215 ASSERT(args.length() == 1);
12587 12216
12588 CONVERT_ARG_CHECKED(JSObject, obj, 0); 12217 CONVERT_ARG_CHECKED(JSObject, obj, 0);
12589 12218
12590 // Use the __proto__ accessor. 12219 // Use the __proto__ accessor.
12591 return Accessors::ObjectPrototype.getter(obj, NULL); 12220 return Accessors::ObjectPrototype.getter(obj, NULL);
12592 } 12221 }
12593 12222
12594 12223
12595 // Patches script source (should be called upon BeforeCompile event). 12224 // Patches script source (should be called upon BeforeCompile event).
12596 RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugSetScriptSource) { 12225 RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugSetScriptSource) {
12597 HandleScope scope(isolate); 12226 HandleScope scope(isolate);
12598 ASSERT(args.length() == 2); 12227 ASSERT(args.length() == 2);
12599 12228
12600 CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0); 12229 CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
12601 CONVERT_ARG_HANDLE_CHECKED(String, source, 1); 12230 Handle<String> source(String::cast(args[1]));
12602 12231
12603 RUNTIME_ASSERT(script_wrapper->value()->IsScript()); 12232 RUNTIME_ASSERT(script_wrapper->value()->IsScript());
12604 Handle<Script> script(Script::cast(script_wrapper->value())); 12233 Handle<Script> script(Script::cast(script_wrapper->value()));
12605 12234
12606 int compilation_state = Smi::cast(script->compilation_state())->value(); 12235 int compilation_state = Smi::cast(script->compilation_state())->value();
12607 RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL); 12236 RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
12608 script->set_source(*source); 12237 script->set_source(*source);
12609 12238
12610 return isolate->heap()->undefined_value(); 12239 return isolate->heap()->undefined_value();
12611 } 12240 }
(...skipping 345 matching lines...) Expand 10 before | Expand all | Expand 10 after
12957 RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) { 12586 RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) {
12958 ASSERT(args.length() == 2); 12587 ASSERT(args.length() == 2);
12959 HandleScope scope(isolate); 12588 HandleScope scope(isolate);
12960 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); 12589 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
12961 CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1); 12590 CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
12962 12591
12963 Handle<Object> result; 12592 Handle<Object> result;
12964 bool pending_exception; 12593 bool pending_exception;
12965 { 12594 {
12966 if (without_debugger) { 12595 if (without_debugger) {
12967 result = Execution::Call(function, isolate->global_object(), 0, NULL, 12596 result = Execution::Call(function, isolate->global(), 0, NULL,
12968 &pending_exception); 12597 &pending_exception);
12969 } else { 12598 } else {
12970 EnterDebugger enter_debugger; 12599 EnterDebugger enter_debugger;
12971 result = Execution::Call(function, isolate->global_object(), 0, NULL, 12600 result = Execution::Call(function, isolate->global(), 0, NULL,
12972 &pending_exception); 12601 &pending_exception);
12973 } 12602 }
12974 } 12603 }
12975 if (!pending_exception) { 12604 if (!pending_exception) {
12976 return *result; 12605 return *result;
12977 } else { 12606 } else {
12978 return Failure::Exception(); 12607 return Failure::Exception();
12979 } 12608 }
12980 } 12609 }
12981 12610
(...skipping 458 matching lines...) Expand 10 before | Expand all | Expand 10 after
13440 // There is no value in the cache. Invoke the function and cache result. 13069 // There is no value in the cache. Invoke the function and cache result.
13441 HandleScope scope(isolate); 13070 HandleScope scope(isolate);
13442 13071
13443 Handle<JSFunctionResultCache> cache_handle(cache); 13072 Handle<JSFunctionResultCache> cache_handle(cache);
13444 Handle<Object> key_handle(key); 13073 Handle<Object> key_handle(key);
13445 Handle<Object> value; 13074 Handle<Object> value;
13446 { 13075 {
13447 Handle<JSFunction> factory(JSFunction::cast( 13076 Handle<JSFunction> factory(JSFunction::cast(
13448 cache_handle->get(JSFunctionResultCache::kFactoryIndex))); 13077 cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
13449 // TODO(antonm): consider passing a receiver when constructing a cache. 13078 // TODO(antonm): consider passing a receiver when constructing a cache.
13450 Handle<Object> receiver(isolate->native_context()->global_object()); 13079 Handle<Object> receiver(isolate->global_context()->global());
13451 // This handle is nor shared, nor used later, so it's safe. 13080 // This handle is nor shared, nor used later, so it's safe.
13452 Handle<Object> argv[] = { key_handle }; 13081 Handle<Object> argv[] = { key_handle };
13453 bool pending_exception; 13082 bool pending_exception;
13454 value = Execution::Call(factory, 13083 value = Execution::Call(factory,
13455 receiver, 13084 receiver,
13456 ARRAY_SIZE(argv), 13085 ARRAY_SIZE(argv),
13457 argv, 13086 argv,
13458 &pending_exception); 13087 &pending_exception);
13459 if (pending_exception) return Failure::Exception(); 13088 if (pending_exception) return Failure::Exception();
13460 } 13089 }
(...skipping 257 matching lines...) Expand 10 before | Expand all | Expand 10 after
13718 // Handle last resort GC and make sure to allow future allocations 13347 // Handle last resort GC and make sure to allow future allocations
13719 // to grow the heap without causing GCs (if possible). 13348 // to grow the heap without causing GCs (if possible).
13720 isolate->counters()->gc_last_resort_from_js()->Increment(); 13349 isolate->counters()->gc_last_resort_from_js()->Increment();
13721 isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, 13350 isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags,
13722 "Runtime::PerformGC"); 13351 "Runtime::PerformGC");
13723 } 13352 }
13724 } 13353 }
13725 13354
13726 13355
13727 } } // namespace v8::internal 13356 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/profile-generator.cc ('k') | src/scopes.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698