OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 // This is an implementation of the P224 elliptic curve group. It's written to | 5 // This is an implementation of the P224 elliptic curve group. It's written to |
6 // be short and simple rather than fast, although it's still constant-time. | 6 // be short and simple rather than fast, although it's still constant-time. |
7 // | 7 // |
8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. |
9 | 9 |
10 #include "crypto/p224.h" | 10 #include "crypto/p224.h" |
(...skipping 14 matching lines...) Expand all Loading... |
25 // Field elements are represented by a FieldElement, which is a typedef to an | 25 // Field elements are represented by a FieldElement, which is a typedef to an |
26 // array of 8 uint32's. The value of a FieldElement, a, is: | 26 // array of 8 uint32's. The value of a FieldElement, a, is: |
27 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] | 27 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] |
28 // | 28 // |
29 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less | 29 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less |
30 // than we would really like. But it has the useful feature that we hit 2**224 | 30 // than we would really like. But it has the useful feature that we hit 2**224 |
31 // exactly, making the reflections during a reduce much nicer. | 31 // exactly, making the reflections during a reduce much nicer. |
32 | 32 |
33 using crypto::p224::FieldElement; | 33 using crypto::p224::FieldElement; |
34 | 34 |
| 35 // kP is the P224 prime. |
| 36 const FieldElement kP = { |
| 37 1, 0, 0, 268431360, |
| 38 268435455, 268435455, 268435455, 268435455, |
| 39 }; |
| 40 |
| 41 void Contract(FieldElement* inout); |
| 42 |
| 43 // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise. |
| 44 uint32 IsZero(const FieldElement& a) { |
| 45 FieldElement minimal; |
| 46 memcpy(&minimal, &a, sizeof(minimal)); |
| 47 Contract(&minimal); |
| 48 |
| 49 uint32 is_zero = 0, is_p = 0; |
| 50 for (unsigned i = 0; i < 8; i++) { |
| 51 is_zero |= minimal[i]; |
| 52 is_p |= minimal[i] - kP[i]; |
| 53 } |
| 54 |
| 55 // If either is_zero or is_p is 0, then we should return 1. |
| 56 is_zero |= is_zero >> 16; |
| 57 is_zero |= is_zero >> 8; |
| 58 is_zero |= is_zero >> 4; |
| 59 is_zero |= is_zero >> 2; |
| 60 is_zero |= is_zero >> 1; |
| 61 |
| 62 is_p |= is_p >> 16; |
| 63 is_p |= is_p >> 8; |
| 64 is_p |= is_p >> 4; |
| 65 is_p |= is_p >> 2; |
| 66 is_p |= is_p >> 1; |
| 67 |
| 68 // For is_zero and is_p, the LSB is 0 iff all the bits are zero. |
| 69 is_zero &= is_p & 1; |
| 70 is_zero = (~is_zero) << 31; |
| 71 is_zero = static_cast<int32>(is_zero) >> 31; |
| 72 return is_zero; |
| 73 } |
| 74 |
35 // Add computes *out = a+b | 75 // Add computes *out = a+b |
36 // | 76 // |
37 // a[i] + b[i] < 2**32 | 77 // a[i] + b[i] < 2**32 |
38 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { | 78 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { |
39 for (int i = 0; i < 8; i++) { | 79 for (int i = 0; i < 8; i++) { |
40 (*out)[i] = a[i] + b[i]; | 80 (*out)[i] = a[i] + b[i]; |
41 } | 81 } |
42 } | 82 } |
43 | 83 |
44 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); | 84 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); |
(...skipping 261 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
306 for (int i = 0; i < 3; i++) { | 346 for (int i = 0; i < 3; i++) { |
307 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); | 347 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); |
308 out[i] += (1 << 28) & mask; | 348 out[i] += (1 << 28) & mask; |
309 out[i+1] -= 1 & mask; | 349 out[i+1] -= 1 & mask; |
310 } | 350 } |
311 | 351 |
312 // The value is < 2**224, but maybe greater than p. In order to reduce to a | 352 // The value is < 2**224, but maybe greater than p. In order to reduce to a |
313 // unique, minimal value we see if the value is >= p and, if so, subtract p. | 353 // unique, minimal value we see if the value is >= p and, if so, subtract p. |
314 | 354 |
315 // First we build a mask from the top four limbs, which must all be | 355 // First we build a mask from the top four limbs, which must all be |
316 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes | 356 // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones |
317 // ends up with any zero bits in the bottom 28 bits, then this wasn't | 357 // ends up with any zero bits in the bottom 28 bits, then this wasn't |
318 // true. | 358 // true. |
319 uint32 top4AllOnes = 0xffffffffu; | 359 uint32 top_4_all_ones = 0xffffffffu; |
320 for (int i = 4; i < 8; i++) { | 360 for (int i = 4; i < 8; i++) { |
321 top4AllOnes &= (out[i] & kBottom28Bits) - 1; | 361 top_4_all_ones &= out[i]; |
322 } | 362 } |
323 top4AllOnes |= 0xf0000000; | 363 top_4_all_ones |= 0xf0000000; |
324 // Now we replicate any zero bits to all the bits in top4AllOnes. | 364 // Now we replicate any zero bits to all the bits in top_4_all_ones. |
325 top4AllOnes &= top4AllOnes >> 16; | 365 top_4_all_ones &= top_4_all_ones >> 16; |
326 top4AllOnes &= top4AllOnes >> 8; | 366 top_4_all_ones &= top_4_all_ones >> 8; |
327 top4AllOnes &= top4AllOnes >> 4; | 367 top_4_all_ones &= top_4_all_ones >> 4; |
328 top4AllOnes &= top4AllOnes >> 2; | 368 top_4_all_ones &= top_4_all_ones >> 2; |
329 top4AllOnes &= top4AllOnes >> 1; | 369 top_4_all_ones &= top_4_all_ones >> 1; |
330 top4AllOnes = | 370 top_4_all_ones = |
331 static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); | 371 static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31); |
332 | 372 |
333 // Now we test whether the bottom three limbs are non-zero. | 373 // Now we test whether the bottom three limbs are non-zero. |
334 uint32 bottom3NonZero = out[0] | out[1] | out[2]; | 374 uint32 bottom_3_non_zero = out[0] | out[1] | out[2]; |
335 bottom3NonZero |= bottom3NonZero >> 16; | 375 bottom_3_non_zero |= bottom_3_non_zero >> 16; |
336 bottom3NonZero |= bottom3NonZero >> 8; | 376 bottom_3_non_zero |= bottom_3_non_zero >> 8; |
337 bottom3NonZero |= bottom3NonZero >> 4; | 377 bottom_3_non_zero |= bottom_3_non_zero >> 4; |
338 bottom3NonZero |= bottom3NonZero >> 2; | 378 bottom_3_non_zero |= bottom_3_non_zero >> 2; |
339 bottom3NonZero |= bottom3NonZero >> 1; | 379 bottom_3_non_zero |= bottom_3_non_zero >> 1; |
340 bottom3NonZero = | 380 bottom_3_non_zero = |
341 static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); | 381 static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31); |
342 | 382 |
343 // Everything depends on the value of out[3]. | 383 // Everything depends on the value of out[3]. |
344 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p | 384 // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p |
345 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, | 385 // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0, |
346 // then the whole value is >= p | 386 // then the whole value is >= p |
347 // If it's < 0xffff000, then the whole value is < p | 387 // If it's < 0xffff000, then the whole value is < p |
348 uint32 n = out[3] - 0xffff000; | 388 uint32 n = out[3] - 0xffff000; |
349 uint32 out3Equal = n; | 389 uint32 out_3_equal = n; |
350 out3Equal |= out3Equal >> 16; | 390 out_3_equal |= out_3_equal >> 16; |
351 out3Equal |= out3Equal >> 8; | 391 out_3_equal |= out_3_equal >> 8; |
352 out3Equal |= out3Equal >> 4; | 392 out_3_equal |= out_3_equal >> 4; |
353 out3Equal |= out3Equal >> 2; | 393 out_3_equal |= out_3_equal >> 2; |
354 out3Equal |= out3Equal >> 1; | 394 out_3_equal |= out_3_equal >> 1; |
355 out3Equal = | 395 out_3_equal = |
356 ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); | 396 ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31); |
357 | 397 |
358 // If out[3] > 0xffff000 then n's MSB will be zero. | 398 // If out[3] > 0xffff000 then n's MSB will be zero. |
359 uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); | 399 uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); |
360 | 400 |
361 uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); | 401 uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt); |
362 out[0] -= 1 & mask; | 402 out[0] -= 1 & mask; |
363 out[3] -= 0xffff000 & mask; | 403 out[3] -= 0xffff000 & mask; |
364 out[4] -= 0xfffffff & mask; | 404 out[4] -= 0xfffffff & mask; |
365 out[5] -= 0xfffffff & mask; | 405 out[5] -= 0xfffffff & mask; |
366 out[6] -= 0xfffffff & mask; | 406 out[6] -= 0xfffffff & mask; |
367 out[7] -= 0xfffffff & mask; | 407 out[7] -= 0xfffffff & mask; |
368 } | 408 } |
369 | 409 |
370 | 410 |
371 // Group element functions. | 411 // Group element functions. |
372 // | 412 // |
373 // These functions deal with group elements. The group is an elliptic curve | 413 // These functions deal with group elements. The group is an elliptic curve |
374 // group with a = -3 defined in FIPS 186-3, section D.2.2. | 414 // group with a = -3 defined in FIPS 186-3, section D.2.2. |
375 | 415 |
376 using crypto::p224::Point; | 416 using crypto::p224::Point; |
377 | 417 |
378 // kP is the P224 prime. | |
379 const FieldElement kP = { | |
380 1, 0, 0, 268431360, | |
381 268435455, 268435455, 268435455, 268435455, | |
382 }; | |
383 | |
384 // kB is parameter of the elliptic curve. | 418 // kB is parameter of the elliptic curve. |
385 const FieldElement kB = { | 419 const FieldElement kB = { |
386 55967668, 11768882, 265861671, 185302395, | 420 55967668, 11768882, 265861671, 185302395, |
387 39211076, 180311059, 84673715, 188764328, | 421 39211076, 180311059, 84673715, 188764328, |
388 }; | 422 }; |
389 | 423 |
| 424 void CopyConditional(Point* out, const Point& a, uint32 mask); |
| 425 void DoubleJacobian(Point* out, const Point& a); |
| 426 |
390 // AddJacobian computes *out = a+b where a != b. | 427 // AddJacobian computes *out = a+b where a != b. |
391 void AddJacobian(Point *out, | 428 void AddJacobian(Point *out, |
392 const Point& a, | 429 const Point& a, |
393 const Point& b) { | 430 const Point& b) { |
394 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-a
dd-2007-bl | 431 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-a
dd-2007-bl |
395 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; | 432 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; |
396 | 433 |
| 434 uint32 z1_is_zero = IsZero(a.z); |
| 435 uint32 z2_is_zero = IsZero(b.z); |
| 436 |
397 // Z1Z1 = Z1² | 437 // Z1Z1 = Z1² |
398 Square(&z1z1, a.z); | 438 Square(&z1z1, a.z); |
399 | 439 |
400 // Z2Z2 = Z2² | 440 // Z2Z2 = Z2² |
401 Square(&z2z2, b.z); | 441 Square(&z2z2, b.z); |
402 | 442 |
403 // U1 = X1*Z2Z2 | 443 // U1 = X1*Z2Z2 |
404 Mul(&u1, a.x, z2z2); | 444 Mul(&u1, a.x, z2z2); |
405 | 445 |
406 // U2 = X2*Z1Z1 | 446 // U2 = X2*Z1Z1 |
407 Mul(&u2, b.x, z1z1); | 447 Mul(&u2, b.x, z1z1); |
408 | 448 |
409 // S1 = Y1*Z2*Z2Z2 | 449 // S1 = Y1*Z2*Z2Z2 |
410 Mul(&s1, b.z, z2z2); | 450 Mul(&s1, b.z, z2z2); |
411 Mul(&s1, a.y, s1); | 451 Mul(&s1, a.y, s1); |
412 | 452 |
413 // S2 = Y2*Z1*Z1Z1 | 453 // S2 = Y2*Z1*Z1Z1 |
414 Mul(&s2, a.z, z1z1); | 454 Mul(&s2, a.z, z1z1); |
415 Mul(&s2, b.y, s2); | 455 Mul(&s2, b.y, s2); |
416 | 456 |
417 // H = U2-U1 | 457 // H = U2-U1 |
418 Subtract(&h, u2, u1); | 458 Subtract(&h, u2, u1); |
419 Reduce(&h); | 459 Reduce(&h); |
| 460 uint32 x_equal = IsZero(h); |
420 | 461 |
421 // I = (2*H)² | 462 // I = (2*H)² |
422 for (int j = 0; j < 8; j++) { | 463 for (int j = 0; j < 8; j++) { |
423 i[j] = h[j] << 1; | 464 i[j] = h[j] << 1; |
424 } | 465 } |
425 Reduce(&i); | 466 Reduce(&i); |
426 Square(&i, i); | 467 Square(&i, i); |
427 | 468 |
428 // J = H*I | 469 // J = H*I |
429 Mul(&j, h, i); | 470 Mul(&j, h, i); |
430 // r = 2*(S2-S1) | 471 // r = 2*(S2-S1) |
431 Subtract(&r, s2, s1); | 472 Subtract(&r, s2, s1); |
432 Reduce(&r); | 473 Reduce(&r); |
| 474 uint32 y_equal = IsZero(r); |
| 475 |
| 476 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { |
| 477 // The two input points are the same therefore we must use the dedicated |
| 478 // doubling function as the slope of the line is undefined. |
| 479 DoubleJacobian(out, a); |
| 480 return; |
| 481 } |
| 482 |
433 for (int i = 0; i < 8; i++) { | 483 for (int i = 0; i < 8; i++) { |
434 r[i] <<= 1; | 484 r[i] <<= 1; |
435 } | 485 } |
436 Reduce(&r); | 486 Reduce(&r); |
437 | 487 |
438 // V = U1*I | 488 // V = U1*I |
439 Mul(&v, u1, i); | 489 Mul(&v, u1, i); |
440 | 490 |
441 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H | 491 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H |
442 Add(&z1z1, z1z1, z2z2); | 492 Add(&z1z1, z1z1, z2z2); |
(...skipping 17 matching lines...) Expand all Loading... |
460 // Y3 = r*(V-X3)-2*S1*J | 510 // Y3 = r*(V-X3)-2*S1*J |
461 for (int i = 0; i < 8; i++) { | 511 for (int i = 0; i < 8; i++) { |
462 s1[i] <<= 1; | 512 s1[i] <<= 1; |
463 } | 513 } |
464 Mul(&s1, s1, j); | 514 Mul(&s1, s1, j); |
465 Subtract(&z1z1, v, out->x); | 515 Subtract(&z1z1, v, out->x); |
466 Reduce(&z1z1); | 516 Reduce(&z1z1); |
467 Mul(&z1z1, z1z1, r); | 517 Mul(&z1z1, z1z1, r); |
468 Subtract(&out->y, z1z1, s1); | 518 Subtract(&out->y, z1z1, s1); |
469 Reduce(&out->y); | 519 Reduce(&out->y); |
| 520 |
| 521 CopyConditional(out, a, z2_is_zero); |
| 522 CopyConditional(out, b, z1_is_zero); |
470 } | 523 } |
471 | 524 |
472 // DoubleJacobian computes *out = a+a. | 525 // DoubleJacobian computes *out = a+a. |
473 void DoubleJacobian(Point* out, const Point& a) { | 526 void DoubleJacobian(Point* out, const Point& a) { |
474 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-d
bl-2001-b | 527 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-d
bl-2001-b |
475 FieldElement delta, gamma, beta, alpha, t; | 528 FieldElement delta, gamma, beta, alpha, t; |
476 | 529 |
477 Square(&delta, a.z); | 530 Square(&delta, a.z); |
478 Square(&gamma, a.y); | 531 Square(&gamma, a.y); |
479 Mul(&beta, a.x, gamma); | 532 Mul(&beta, a.x, gamma); |
(...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
535 } | 588 } |
536 } | 589 } |
537 | 590 |
538 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of | 591 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of |
539 // length scalar_len and != 0. | 592 // length scalar_len and != 0. |
540 void ScalarMult(Point* out, const Point& a, | 593 void ScalarMult(Point* out, const Point& a, |
541 const uint8* scalar, size_t scalar_len) { | 594 const uint8* scalar, size_t scalar_len) { |
542 memset(out, 0, sizeof(*out)); | 595 memset(out, 0, sizeof(*out)); |
543 Point tmp; | 596 Point tmp; |
544 | 597 |
545 uint32 first_bit = 0xffffffff; | |
546 for (size_t i = 0; i < scalar_len; i++) { | 598 for (size_t i = 0; i < scalar_len; i++) { |
547 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { | 599 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { |
548 DoubleJacobian(out, *out); | 600 DoubleJacobian(out, *out); |
549 uint32 bit = static_cast<uint32>(static_cast<int32>( | 601 uint32 bit = static_cast<uint32>(static_cast<int32>( |
550 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); | 602 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); |
551 AddJacobian(&tmp, a, *out); | 603 AddJacobian(&tmp, a, *out); |
552 CopyConditional(out, a, first_bit & bit); | 604 CopyConditional(out, tmp, bit); |
553 CopyConditional(out, tmp, ~first_bit & bit); | |
554 first_bit = first_bit & ~bit; | |
555 } | 605 } |
556 } | 606 } |
557 } | 607 } |
558 | 608 |
559 // Get224Bits reads 7 words from in and scatters their contents in | 609 // Get224Bits reads 7 words from in and scatters their contents in |
560 // little-endian form into 8 words at out, 28 bits per output word. | 610 // little-endian form into 8 words at out, 28 bits per output word. |
561 void Get224Bits(uint32* out, const uint32* in) { | 611 void Get224Bits(uint32* out, const uint32* in) { |
562 out[0] = NetToHost32(in[6]) & kBottom28Bits; | 612 out[0] = NetToHost32(in[6]) & kBottom28Bits; |
563 out[1] = ((NetToHost32(in[5]) << 4) | | 613 out[1] = ((NetToHost32(in[5]) << 4) | |
564 (NetToHost32(in[6]) >> 28)) & kBottom28Bits; | 614 (NetToHost32(in[6]) >> 28)) & kBottom28Bits; |
(...skipping 56 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
621 Reduce(&rhs); | 671 Reduce(&rhs); |
622 | 672 |
623 ::Add(&rhs, rhs, kB); | 673 ::Add(&rhs, rhs, kB); |
624 Contract(&rhs); | 674 Contract(&rhs); |
625 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; | 675 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; |
626 } | 676 } |
627 | 677 |
628 std::string Point::ToString() const { | 678 std::string Point::ToString() const { |
629 FieldElement zinv, zinv_sq, x, y; | 679 FieldElement zinv, zinv_sq, x, y; |
630 | 680 |
| 681 // If this is the point at infinity we return a string of all zeros. |
| 682 if (IsZero(this->z)) { |
| 683 static const char zeros[56] = {0}; |
| 684 return std::string(zeros, sizeof(zeros)); |
| 685 } |
| 686 |
631 Invert(&zinv, this->z); | 687 Invert(&zinv, this->z); |
632 Square(&zinv_sq, zinv); | 688 Square(&zinv_sq, zinv); |
633 Mul(&x, this->x, zinv_sq); | 689 Mul(&x, this->x, zinv_sq); |
634 Mul(&zinv_sq, zinv_sq, zinv); | 690 Mul(&zinv_sq, zinv_sq, zinv); |
635 Mul(&y, this->y, zinv_sq); | 691 Mul(&y, this->y, zinv_sq); |
636 | 692 |
637 Contract(&x); | 693 Contract(&x); |
638 Contract(&y); | 694 Contract(&y); |
639 | 695 |
640 uint32 outwords[14]; | 696 uint32 outwords[14]; |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
678 Subtract(&out->y, kP, y); | 734 Subtract(&out->y, kP, y); |
679 Reduce(&out->y); | 735 Reduce(&out->y); |
680 | 736 |
681 memset(&out->z, 0, sizeof(out->z)); | 737 memset(&out->z, 0, sizeof(out->z)); |
682 out->z[0] = 1; | 738 out->z[0] = 1; |
683 } | 739 } |
684 | 740 |
685 } // namespace p224 | 741 } // namespace p224 |
686 | 742 |
687 } // namespace crypto | 743 } // namespace crypto |
OLD | NEW |