| Index: third_party/re2/re2/re2.h
|
| diff --git a/third_party/re2/re2/re2.h b/third_party/re2/re2/re2.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..6cc4e8ed0d67e607ee10b11174f30405940b0c7e
|
| --- /dev/null
|
| +++ b/third_party/re2/re2/re2.h
|
| @@ -0,0 +1,836 @@
|
| +// Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
|
| +// Use of this source code is governed by a BSD-style
|
| +// license that can be found in the LICENSE file.
|
| +
|
| +#ifndef RE2_RE2_H
|
| +#define RE2_RE2_H
|
| +
|
| +#define kDefaultMaxMem (8<<20)
|
| +
|
| +// C++ interface to the re2 regular-expression library.
|
| +// RE2 supports Perl-style regular expressions (with extensions like
|
| +// \d, \w, \s, ...).
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// REGEXP SYNTAX:
|
| +//
|
| +// This module uses the re2 library and hence supports
|
| +// its syntax for regular expressions, which is similar to Perl's with
|
| +// some of the more complicated things thrown away. In particular,
|
| +// backreferences and generalized assertions are not available, nor is \Z.
|
| +//
|
| +// See http://code.google.com/p/re2/wiki/Syntax for the syntax
|
| +// supported by RE2, and a comparison with PCRE and PERL regexps.
|
| +//
|
| +// For those not familiar with Perl's regular expressions,
|
| +// here are some examples of the most commonly used extensions:
|
| +//
|
| +// "hello (\\w+) world" -- \w matches a "word" character
|
| +// "version (\\d+)" -- \d matches a digit
|
| +// "hello\\s+world" -- \s matches any whitespace character
|
| +// "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary
|
| +// "(?i)hello" -- (?i) turns on case-insensitive matching
|
| +// "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// MATCHING INTERFACE:
|
| +//
|
| +// The "FullMatch" operation checks that supplied text matches a
|
| +// supplied pattern exactly.
|
| +//
|
| +// Example: successful match
|
| +// CHECK(RE2::FullMatch("hello", "h.*o"));
|
| +//
|
| +// Example: unsuccessful match (requires full match):
|
| +// CHECK(!RE2::FullMatch("hello", "e"));
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// UTF-8 AND THE MATCHING INTERFACE:
|
| +//
|
| +// By default, the pattern and input text are interpreted as UTF-8.
|
| +// The RE2::Latin1 option causes them to be interpreted as Latin-1.
|
| +//
|
| +// Example:
|
| +// CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
|
| +// CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// MATCHING WITH SUB-STRING EXTRACTION:
|
| +//
|
| +// You can supply extra pointer arguments to extract matched subpieces.
|
| +//
|
| +// Example: extracts "ruby" into "s" and 1234 into "i"
|
| +// int i;
|
| +// string s;
|
| +// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
|
| +//
|
| +// Example: fails because string cannot be stored in integer
|
| +// CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
|
| +//
|
| +// Example: fails because there aren't enough sub-patterns:
|
| +// CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
|
| +//
|
| +// Example: does not try to extract any extra sub-patterns
|
| +// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
|
| +//
|
| +// Example: does not try to extract into NULL
|
| +// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
|
| +//
|
| +// Example: integer overflow causes failure
|
| +// CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
|
| +//
|
| +// NOTE(rsc): Asking for substrings slows successful matches quite a bit.
|
| +// This may get a little faster in the future, but right now is slower
|
| +// than PCRE. On the other hand, failed matches run *very* fast (faster
|
| +// than PCRE), as do matches without substring extraction.
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// PARTIAL MATCHES
|
| +//
|
| +// You can use the "PartialMatch" operation when you want the pattern
|
| +// to match any substring of the text.
|
| +//
|
| +// Example: simple search for a string:
|
| +// CHECK(RE2::PartialMatch("hello", "ell"));
|
| +//
|
| +// Example: find first number in a string
|
| +// int number;
|
| +// CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
|
| +// CHECK_EQ(number, 100);
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// PRE-COMPILED REGULAR EXPRESSIONS
|
| +//
|
| +// RE2 makes it easy to use any string as a regular expression, without
|
| +// requiring a separate compilation step.
|
| +//
|
| +// If speed is of the essence, you can create a pre-compiled "RE2"
|
| +// object from the pattern and use it multiple times. If you do so,
|
| +// you can typically parse text faster than with sscanf.
|
| +//
|
| +// Example: precompile pattern for faster matching:
|
| +// RE2 pattern("h.*o");
|
| +// while (ReadLine(&str)) {
|
| +// if (RE2::FullMatch(str, pattern)) ...;
|
| +// }
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// SCANNING TEXT INCREMENTALLY
|
| +//
|
| +// The "Consume" operation may be useful if you want to repeatedly
|
| +// match regular expressions at the front of a string and skip over
|
| +// them as they match. This requires use of the "StringPiece" type,
|
| +// which represents a sub-range of a real string.
|
| +//
|
| +// Example: read lines of the form "var = value" from a string.
|
| +// string contents = ...; // Fill string somehow
|
| +// StringPiece input(contents); // Wrap a StringPiece around it
|
| +//
|
| +// string var;
|
| +// int value;
|
| +// while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
|
| +// ...;
|
| +// }
|
| +//
|
| +// Each successful call to "Consume" will set "var/value", and also
|
| +// advance "input" so it points past the matched text. Note that if the
|
| +// regular expression matches an empty string, input will advance
|
| +// by 0 bytes. If the regular expression being used might match
|
| +// an empty string, the loop body must check for this case and either
|
| +// advance the string or break out of the loop.
|
| +//
|
| +// The "FindAndConsume" operation is similar to "Consume" but does not
|
| +// anchor your match at the beginning of the string. For example, you
|
| +// could extract all words from a string by repeatedly calling
|
| +// RE2::FindAndConsume(&input, "(\\w+)", &word)
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// USING VARIABLE NUMBER OF ARGUMENTS
|
| +//
|
| +// The above operations require you to know the number of arguments
|
| +// when you write the code. This is not always possible or easy (for
|
| +// example, the regular expression may be calculated at run time).
|
| +// You can use the "N" version of the operations when the number of
|
| +// match arguments are determined at run time.
|
| +//
|
| +// Example:
|
| +// const RE2::Arg* args[10];
|
| +// int n;
|
| +// // ... populate args with pointers to RE2::Arg values ...
|
| +// // ... set n to the number of RE2::Arg objects ...
|
| +// bool match = RE2::FullMatchN(input, pattern, args, n);
|
| +//
|
| +// The last statement is equivalent to
|
| +//
|
| +// bool match = RE2::FullMatch(input, pattern,
|
| +// *args[0], *args[1], ..., *args[n - 1]);
|
| +//
|
| +// -----------------------------------------------------------------------
|
| +// PARSING HEX/OCTAL/C-RADIX NUMBERS
|
| +//
|
| +// By default, if you pass a pointer to a numeric value, the
|
| +// corresponding text is interpreted as a base-10 number. You can
|
| +// instead wrap the pointer with a call to one of the operators Hex(),
|
| +// Octal(), or CRadix() to interpret the text in another base. The
|
| +// CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
|
| +// prefixes, but defaults to base-10.
|
| +//
|
| +// Example:
|
| +// int a, b, c, d;
|
| +// CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
|
| +// RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
|
| +// will leave 64 in a, b, c, and d.
|
| +
|
| +
|
| +#include <stdint.h>
|
| +#include <map>
|
| +#include <string>
|
| +#include "re2/stringpiece.h"
|
| +#include "re2/variadic_function.h"
|
| +
|
| +namespace re2 {
|
| +using std::string;
|
| +using std::map;
|
| +class Mutex;
|
| +class Prog;
|
| +class Regexp;
|
| +
|
| +// Interface for regular expression matching. Also corresponds to a
|
| +// pre-compiled regular expression. An "RE2" object is safe for
|
| +// concurrent use by multiple threads.
|
| +class RE2 {
|
| + public:
|
| + // We convert user-passed pointers into special Arg objects
|
| + class Arg;
|
| + class Options;
|
| +
|
| + // Defined in set.h.
|
| + class Set;
|
| +
|
| + enum ErrorCode {
|
| + NoError = 0,
|
| +
|
| + // Unexpected error
|
| + ErrorInternal,
|
| +
|
| + // Parse errors
|
| + ErrorBadEscape, // bad escape sequence
|
| + ErrorBadCharClass, // bad character class
|
| + ErrorBadCharRange, // bad character class range
|
| + ErrorMissingBracket, // missing closing ]
|
| + ErrorMissingParen, // missing closing )
|
| + ErrorTrailingBackslash, // trailing \ at end of regexp
|
| + ErrorRepeatArgument, // repeat argument missing, e.g. "*"
|
| + ErrorRepeatSize, // bad repetition argument
|
| + ErrorRepeatOp, // bad repetition operator
|
| + ErrorBadPerlOp, // bad perl operator
|
| + ErrorBadUTF8, // invalid UTF-8 in regexp
|
| + ErrorBadNamedCapture, // bad named capture group
|
| + ErrorPatternTooLarge, // pattern too large (compile failed)
|
| + };
|
| +
|
| + // Predefined common options.
|
| + // If you need more complicated things, instantiate
|
| + // an Option class, change the settings, and pass it to the
|
| + // RE2 constructor.
|
| + static const Options DefaultOptions;
|
| + static const Options Latin1; // treat input as Latin-1 (default UTF-8)
|
| + //static const Options POSIX; // POSIX syntax, leftmost-longest match
|
| + static const Options Quiet; // do not log about regexp parse errors
|
| +
|
| + // Need to have the const char* and const string& forms for implicit
|
| + // conversions when passing string literals to FullMatch and PartialMatch.
|
| + // Otherwise the StringPiece form would be sufficient.
|
| +#ifndef SWIG
|
| + RE2(const char* pattern);
|
| + RE2(const string& pattern);
|
| +#endif
|
| + RE2(const StringPiece& pattern);
|
| + RE2(const StringPiece& pattern, const Options& option);
|
| + ~RE2();
|
| +
|
| + // Returns whether RE2 was created properly.
|
| + bool ok() const { return error_code() == NoError; }
|
| +
|
| + // The string specification for this RE2. E.g.
|
| + // RE2 re("ab*c?d+");
|
| + // re.pattern(); // "ab*c?d+"
|
| + const string& pattern() const { return pattern_; }
|
| +
|
| + // If RE2 could not be created properly, returns an error string.
|
| + // Else returns the empty string.
|
| + const string& error() const { return *error_; }
|
| +
|
| + // If RE2 could not be created properly, returns an error code.
|
| + // Else returns RE2::NoError (== 0).
|
| + ErrorCode error_code() const { return error_code_; }
|
| +
|
| + // If RE2 could not be created properly, returns the offending
|
| + // portion of the regexp.
|
| + const string& error_arg() const { return error_arg_; }
|
| +
|
| + // Returns the program size, a very approximate measure of a regexp's "cost".
|
| + // Larger numbers are more expensive than smaller numbers.
|
| + int ProgramSize() const;
|
| +
|
| + // Returns the underlying Regexp; not for general use.
|
| + // Returns entire_regexp_ so that callers don't need
|
| + // to know about prefix_ and prefix_foldcase_.
|
| + re2::Regexp* Regexp() const { return entire_regexp_; }
|
| +
|
| + /***** The useful part: the matching interface *****/
|
| +
|
| + // Matches "text" against "pattern". If pointer arguments are
|
| + // supplied, copies matched sub-patterns into them.
|
| + //
|
| + // You can pass in a "const char*" or a "string" for "text".
|
| + // You can pass in a "const char*" or a "string" or a "RE2" for "pattern".
|
| + //
|
| + // The provided pointer arguments can be pointers to any scalar numeric
|
| + // type, or one of:
|
| + // string (matched piece is copied to string)
|
| + // StringPiece (StringPiece is mutated to point to matched piece)
|
| + // T (where "bool T::ParseFrom(const char*, int)" exists)
|
| + // (void*)NULL (the corresponding matched sub-pattern is not copied)
|
| + //
|
| + // Returns true iff all of the following conditions are satisfied:
|
| + // a. "text" matches "pattern" exactly
|
| + // b. The number of matched sub-patterns is >= number of supplied pointers
|
| + // c. The "i"th argument has a suitable type for holding the
|
| + // string captured as the "i"th sub-pattern. If you pass in
|
| + // NULL for the "i"th argument, or pass fewer arguments than
|
| + // number of sub-patterns, "i"th captured sub-pattern is
|
| + // ignored.
|
| + //
|
| + // CAVEAT: An optional sub-pattern that does not exist in the
|
| + // matched string is assigned the empty string. Therefore, the
|
| + // following will return false (because the empty string is not a
|
| + // valid number):
|
| + // int number;
|
| + // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
|
| + static bool FullMatchN(const StringPiece& text, const RE2& re,
|
| + const Arg* const args[], int argc);
|
| + static const VariadicFunction2<
|
| + bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch;
|
| +
|
| + // Exactly like FullMatch(), except that "pattern" is allowed to match
|
| + // a substring of "text".
|
| + static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args
|
| + const Arg* const args[], int argc);
|
| + static const VariadicFunction2<
|
| + bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch;
|
| +
|
| + // Like FullMatch() and PartialMatch(), except that pattern has to
|
| + // match a prefix of "text", and "input" is advanced past the matched
|
| + // text. Note: "input" is modified iff this routine returns true.
|
| + static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args
|
| + const Arg* const args[], int argc);
|
| + static const VariadicFunction2<
|
| + bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume;
|
| +
|
| + // Like Consume(..), but does not anchor the match at the beginning of the
|
| + // string. That is, "pattern" need not start its match at the beginning of
|
| + // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next
|
| + // word in "s" and stores it in "word".
|
| + static bool FindAndConsumeN(StringPiece* input, const RE2& pattern,
|
| + const Arg* const args[], int argc);
|
| + static const VariadicFunction2<
|
| + bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume;
|
| +
|
| + // Replace the first match of "pattern" in "str" with "rewrite".
|
| + // Within "rewrite", backslash-escaped digits (\1 to \9) can be
|
| + // used to insert text matching corresponding parenthesized group
|
| + // from the pattern. \0 in "rewrite" refers to the entire matching
|
| + // text. E.g.,
|
| + //
|
| + // string s = "yabba dabba doo";
|
| + // CHECK(RE2::Replace(&s, "b+", "d"));
|
| + //
|
| + // will leave "s" containing "yada dabba doo"
|
| + //
|
| + // Returns true if the pattern matches and a replacement occurs,
|
| + // false otherwise.
|
| + static bool Replace(string *str,
|
| + const RE2& pattern,
|
| + const StringPiece& rewrite);
|
| +
|
| + // Like Replace(), except replaces successive non-overlapping occurrences
|
| + // of the pattern in the string with the rewrite. E.g.
|
| + //
|
| + // string s = "yabba dabba doo";
|
| + // CHECK(RE2::GlobalReplace(&s, "b+", "d"));
|
| + //
|
| + // will leave "s" containing "yada dada doo"
|
| + // Replacements are not subject to re-matching.
|
| + //
|
| + // Because GlobalReplace only replaces non-overlapping matches,
|
| + // replacing "ana" within "banana" makes only one replacement, not two.
|
| + //
|
| + // Returns the number of replacements made.
|
| + static int GlobalReplace(string *str,
|
| + const RE2& pattern,
|
| + const StringPiece& rewrite);
|
| +
|
| + // Like Replace, except that if the pattern matches, "rewrite"
|
| + // is copied into "out" with substitutions. The non-matching
|
| + // portions of "text" are ignored.
|
| + //
|
| + // Returns true iff a match occurred and the extraction happened
|
| + // successfully; if no match occurs, the string is left unaffected.
|
| + static bool Extract(const StringPiece &text,
|
| + const RE2& pattern,
|
| + const StringPiece &rewrite,
|
| + string *out);
|
| +
|
| + // Escapes all potentially meaningful regexp characters in
|
| + // 'unquoted'. The returned string, used as a regular expression,
|
| + // will exactly match the original string. For example,
|
| + // 1.5-2.0?
|
| + // may become:
|
| + // 1\.5\-2\.0\?
|
| + static string QuoteMeta(const StringPiece& unquoted);
|
| +
|
| + // Computes range for any strings matching regexp. The min and max can in
|
| + // some cases be arbitrarily precise, so the caller gets to specify the
|
| + // maximum desired length of string returned.
|
| + //
|
| + // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
|
| + // string s that is an anchored match for this regexp satisfies
|
| + // min <= s && s <= max.
|
| + //
|
| + // Note that PossibleMatchRange() will only consider the first copy of an
|
| + // infinitely repeated element (i.e., any regexp element followed by a '*' or
|
| + // '+' operator). Regexps with "{N}" constructions are not affected, as those
|
| + // do not compile down to infinite repetitions.
|
| + //
|
| + // Returns true on success, false on error.
|
| + bool PossibleMatchRange(string* min, string* max, int maxlen) const;
|
| +
|
| + // Generic matching interface
|
| +
|
| + // Type of match.
|
| + enum Anchor {
|
| + UNANCHORED, // No anchoring
|
| + ANCHOR_START, // Anchor at start only
|
| + ANCHOR_BOTH, // Anchor at start and end
|
| + };
|
| +
|
| + // Return the number of capturing subpatterns, or -1 if the
|
| + // regexp wasn't valid on construction. The overall match ($0)
|
| + // does not count: if the regexp is "(a)(b)", returns 2.
|
| + int NumberOfCapturingGroups() const;
|
| +
|
| +
|
| + // Return a map from names to capturing indices.
|
| + // The map records the index of the leftmost group
|
| + // with the given name.
|
| + // Only valid until the re is deleted.
|
| + const map<string, int>& NamedCapturingGroups() const;
|
| +
|
| + // Return a map from capturing indices to names.
|
| + // The map has no entries for unnamed groups.
|
| + // Only valid until the re is deleted.
|
| + const map<int, string>& CapturingGroupNames() const;
|
| +
|
| + // General matching routine.
|
| + // Match against text starting at offset startpos
|
| + // and stopping the search at offset endpos.
|
| + // Returns true if match found, false if not.
|
| + // On a successful match, fills in match[] (up to nmatch entries)
|
| + // with information about submatches.
|
| + // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
|
| + // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar",
|
| + // match[3] = NULL, ..., up to match[nmatch-1] = NULL.
|
| + //
|
| + // Don't ask for more match information than you will use:
|
| + // runs much faster with nmatch == 1 than nmatch > 1, and
|
| + // runs even faster if nmatch == 0.
|
| + // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
|
| + // but will be handled correctly.
|
| + //
|
| + // Passing text == StringPiece(NULL, 0) will be handled like any other
|
| + // empty string, but note that on return, it will not be possible to tell
|
| + // whether submatch i matched the empty string or did not match:
|
| + // either way, match[i] == NULL.
|
| + bool Match(const StringPiece& text,
|
| + int startpos,
|
| + int endpos,
|
| + Anchor anchor,
|
| + StringPiece *match,
|
| + int nmatch) const;
|
| +
|
| + // Check that the given rewrite string is suitable for use with this
|
| + // regular expression. It checks that:
|
| + // * The regular expression has enough parenthesized subexpressions
|
| + // to satisfy all of the \N tokens in rewrite
|
| + // * The rewrite string doesn't have any syntax errors. E.g.,
|
| + // '\' followed by anything other than a digit or '\'.
|
| + // A true return value guarantees that Replace() and Extract() won't
|
| + // fail because of a bad rewrite string.
|
| + bool CheckRewriteString(const StringPiece& rewrite, string* error) const;
|
| +
|
| + // Constructor options
|
| + class Options {
|
| + public:
|
| + // The options are (defaults in parentheses):
|
| + //
|
| + // utf8 (true) text and pattern are UTF-8; otherwise Latin-1
|
| + // posix_syntax (false) restrict regexps to POSIX egrep syntax
|
| + // longest_match (false) search for longest match, not first match
|
| + // log_errors (true) log syntax and execution errors to ERROR
|
| + // max_mem (see below) approx. max memory footprint of RE2
|
| + // literal (false) interpret string as literal, not regexp
|
| + // never_nl (false) never match \n, even if it is in regexp
|
| + // case_sensitive (true) match is case-sensitive (regexp can override
|
| + // with (?i) unless in posix_syntax mode)
|
| + //
|
| + // The following options are only consulted when posix_syntax == true.
|
| + // (When posix_syntax == false these features are always enabled and
|
| + // cannot be turned off.)
|
| + // perl_classes (false) allow Perl's \d \s \w \D \S \W
|
| + // word_boundary (false) allow Perl's \b \B (word boundary and not)
|
| + // one_line (false) ^ and $ only match beginning and end of text
|
| + //
|
| + // The max_mem option controls how much memory can be used
|
| + // to hold the compiled form of the regexp (the Prog) and
|
| + // its cached DFA graphs. Code Search placed limits on the number
|
| + // of Prog instructions and DFA states: 10,000 for both.
|
| + // In RE2, those limits would translate to about 240 KB per Prog
|
| + // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
|
| + // better job of keeping them small than Code Search did).
|
| + // Each RE2 has two Progs (one forward, one reverse), and each Prog
|
| + // can have two DFAs (one first match, one longest match).
|
| + // That makes 4 DFAs:
|
| + //
|
| + // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches
|
| + // if opt.longest_match() == false
|
| + // forward, longest-match - used for all ANCHOR_BOTH searches,
|
| + // and the other two kinds if
|
| + // opt.longest_match() == true
|
| + // reverse, first-match - never used
|
| + // reverse, longest-match - used as second phase for unanchored searches
|
| + //
|
| + // The RE2 memory budget is statically divided between the two
|
| + // Progs and then the DFAs: two thirds to the forward Prog
|
| + // and one third to the reverse Prog. The forward Prog gives half
|
| + // of what it has left over to each of its DFAs. The reverse Prog
|
| + // gives it all to its longest-match DFA.
|
| + //
|
| + // Once a DFA fills its budget, it flushes its cache and starts over.
|
| + // If this happens too often, RE2 falls back on the NFA implementation.
|
| +
|
| + enum Encoding {
|
| + EncodingUTF8 = 1,
|
| + EncodingLatin1
|
| + };
|
| +
|
| + Options() :
|
| + encoding_(EncodingUTF8),
|
| + posix_syntax_(false),
|
| + longest_match_(false),
|
| + log_errors_(true),
|
| + max_mem_(kDefaultMaxMem),
|
| + literal_(false),
|
| + never_nl_(false),
|
| + case_sensitive_(true),
|
| + perl_classes_(false),
|
| + word_boundary_(false),
|
| + one_line_(false) {
|
| + }
|
| +
|
| + Encoding encoding() const { return encoding_; }
|
| + void set_encoding(Encoding encoding) { encoding_ = encoding; }
|
| +
|
| + // Legacy interface to encoding.
|
| + // TODO(rsc): Remove once clients have been converted.
|
| + bool utf8() const { return encoding_ == EncodingUTF8; }
|
| + void set_utf8(bool b) {
|
| + if (b) {
|
| + encoding_ = EncodingUTF8;
|
| + } else {
|
| + encoding_ = EncodingLatin1;
|
| + }
|
| + }
|
| +
|
| + bool posix_syntax() const { return posix_syntax_; }
|
| + void set_posix_syntax(bool b) { posix_syntax_ = b; }
|
| +
|
| + bool longest_match() const { return longest_match_; }
|
| + void set_longest_match(bool b) { longest_match_ = b; }
|
| +
|
| + bool log_errors() const { return log_errors_; }
|
| + void set_log_errors(bool b) { log_errors_ = b; }
|
| +
|
| + int max_mem() const { return max_mem_; }
|
| + void set_max_mem(int m) { max_mem_ = m; }
|
| +
|
| + bool literal() const { return literal_; }
|
| + void set_literal(bool b) { literal_ = b; }
|
| +
|
| + bool never_nl() const { return never_nl_; }
|
| + void set_never_nl(bool b) { never_nl_ = b; }
|
| +
|
| + bool case_sensitive() const { return case_sensitive_; }
|
| + void set_case_sensitive(bool b) { case_sensitive_ = b; }
|
| +
|
| + bool perl_classes() const { return perl_classes_; }
|
| + void set_perl_classes(bool b) { perl_classes_ = b; }
|
| +
|
| + bool word_boundary() const { return word_boundary_; }
|
| + void set_word_boundary(bool b) { word_boundary_ = b; }
|
| +
|
| + bool one_line() const { return one_line_; }
|
| + void set_one_line(bool b) { one_line_ = b; }
|
| +
|
| + void Copy(const Options& src) {
|
| + encoding_ = src.encoding_;
|
| + posix_syntax_ = src.posix_syntax_;
|
| + longest_match_ = src.longest_match_;
|
| + log_errors_ = src.log_errors_;
|
| + max_mem_ = src.max_mem_;
|
| + literal_ = src.literal_;
|
| + never_nl_ = src.never_nl_;
|
| + case_sensitive_ = src.case_sensitive_;
|
| + perl_classes_ = src.perl_classes_;
|
| + word_boundary_ = src.word_boundary_;
|
| + one_line_ = src.one_line_;
|
| + }
|
| +
|
| + int ParseFlags() const;
|
| +
|
| + private:
|
| + // Private constructor for defining constants like RE2::Latin1.
|
| + friend class RE2;
|
| + Options(Encoding encoding,
|
| + bool posix_syntax,
|
| + bool longest_match,
|
| + bool log_errors) :
|
| + encoding_(encoding),
|
| + posix_syntax_(posix_syntax),
|
| + longest_match_(longest_match),
|
| + log_errors_(log_errors),
|
| + max_mem_(kDefaultMaxMem),
|
| + literal_(false),
|
| + never_nl_(false),
|
| + case_sensitive_(true),
|
| + perl_classes_(false),
|
| + word_boundary_(false),
|
| + one_line_(false) {
|
| + }
|
| +
|
| + Encoding encoding_;
|
| + bool posix_syntax_;
|
| + bool longest_match_;
|
| + bool log_errors_;
|
| + int64_t max_mem_;
|
| + bool literal_;
|
| + bool never_nl_;
|
| + bool case_sensitive_;
|
| + bool perl_classes_;
|
| + bool word_boundary_;
|
| + bool one_line_;
|
| +
|
| + //DISALLOW_EVIL_CONSTRUCTORS(Options);
|
| + Options(const Options&);
|
| + void operator=(const Options&);
|
| + };
|
| +
|
| + // Returns the options set in the constructor.
|
| + const Options& options() const { return options_; };
|
| +
|
| + // Argument converters; see below.
|
| + static inline Arg CRadix(short* x);
|
| + static inline Arg CRadix(unsigned short* x);
|
| + static inline Arg CRadix(int* x);
|
| + static inline Arg CRadix(unsigned int* x);
|
| + static inline Arg CRadix(long* x);
|
| + static inline Arg CRadix(unsigned long* x);
|
| + static inline Arg CRadix(long long* x);
|
| + static inline Arg CRadix(unsigned long long* x);
|
| +
|
| + static inline Arg Hex(short* x);
|
| + static inline Arg Hex(unsigned short* x);
|
| + static inline Arg Hex(int* x);
|
| + static inline Arg Hex(unsigned int* x);
|
| + static inline Arg Hex(long* x);
|
| + static inline Arg Hex(unsigned long* x);
|
| + static inline Arg Hex(long long* x);
|
| + static inline Arg Hex(unsigned long long* x);
|
| +
|
| + static inline Arg Octal(short* x);
|
| + static inline Arg Octal(unsigned short* x);
|
| + static inline Arg Octal(int* x);
|
| + static inline Arg Octal(unsigned int* x);
|
| + static inline Arg Octal(long* x);
|
| + static inline Arg Octal(unsigned long* x);
|
| + static inline Arg Octal(long long* x);
|
| + static inline Arg Octal(unsigned long long* x);
|
| +
|
| + private:
|
| + void Init(const StringPiece& pattern, const Options& options);
|
| +
|
| + bool Rewrite(string *out,
|
| + const StringPiece &rewrite,
|
| + const StringPiece* vec,
|
| + int veclen) const;
|
| +
|
| + bool DoMatch(const StringPiece& text,
|
| + Anchor anchor,
|
| + int* consumed,
|
| + const Arg* const args[],
|
| + int n) const;
|
| +
|
| + re2::Prog* ReverseProg() const;
|
| +
|
| + mutable Mutex* mutex_;
|
| + string pattern_; // string regular expression
|
| + Options options_; // option flags
|
| + string prefix_; // required prefix (before regexp_)
|
| + bool prefix_foldcase_; // prefix is ASCII case-insensitive
|
| + re2::Regexp* entire_regexp_; // parsed regular expression
|
| + re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed
|
| + re2::Prog* prog_; // compiled program for regexp
|
| + mutable re2::Prog* rprog_; // reverse program for regexp
|
| + bool is_one_pass_; // can use prog_->SearchOnePass?
|
| + mutable const string* error_; // Error indicator
|
| + // (or points to empty string)
|
| + mutable ErrorCode error_code_; // Error code
|
| + mutable string error_arg_; // Fragment of regexp showing error
|
| + mutable int num_captures_; // Number of capturing groups
|
| +
|
| + // Map from capture names to indices
|
| + mutable const map<string, int>* named_groups_;
|
| +
|
| + // Map from capture indices to names
|
| + mutable const map<int, string>* group_names_;
|
| +
|
| + //DISALLOW_EVIL_CONSTRUCTORS(RE2);
|
| + RE2(const RE2&);
|
| + void operator=(const RE2&);
|
| +};
|
| +
|
| +/***** Implementation details *****/
|
| +
|
| +// Hex/Octal/Binary?
|
| +
|
| +// Special class for parsing into objects that define a ParseFrom() method
|
| +template <class T>
|
| +class _RE2_MatchObject {
|
| + public:
|
| + static inline bool Parse(const char* str, int n, void* dest) {
|
| + if (dest == NULL) return true;
|
| + T* object = reinterpret_cast<T*>(dest);
|
| + return object->ParseFrom(str, n);
|
| + }
|
| +};
|
| +
|
| +class RE2::Arg {
|
| + public:
|
| + // Empty constructor so we can declare arrays of RE2::Arg
|
| + Arg();
|
| +
|
| + // Constructor specially designed for NULL arguments
|
| + Arg(void*);
|
| +
|
| + typedef bool (*Parser)(const char* str, int n, void* dest);
|
| +
|
| +// Type-specific parsers
|
| +#define MAKE_PARSER(type,name) \
|
| + Arg(type* p) : arg_(p), parser_(name) { } \
|
| + Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \
|
| +
|
| +
|
| + MAKE_PARSER(char, parse_char);
|
| + MAKE_PARSER(signed char, parse_char);
|
| + MAKE_PARSER(unsigned char, parse_uchar);
|
| + MAKE_PARSER(short, parse_short);
|
| + MAKE_PARSER(unsigned short, parse_ushort);
|
| + MAKE_PARSER(int, parse_int);
|
| + MAKE_PARSER(unsigned int, parse_uint);
|
| + MAKE_PARSER(long, parse_long);
|
| + MAKE_PARSER(unsigned long, parse_ulong);
|
| + MAKE_PARSER(long long, parse_longlong);
|
| + MAKE_PARSER(unsigned long long, parse_ulonglong);
|
| + MAKE_PARSER(float, parse_float);
|
| + MAKE_PARSER(double, parse_double);
|
| + MAKE_PARSER(string, parse_string);
|
| + MAKE_PARSER(StringPiece, parse_stringpiece);
|
| +
|
| +#undef MAKE_PARSER
|
| +
|
| + // Generic constructor
|
| + template <class T> Arg(T*, Parser parser);
|
| + // Generic constructor template
|
| + template <class T> Arg(T* p)
|
| + : arg_(p), parser_(_RE2_MatchObject<T>::Parse) {
|
| + }
|
| +
|
| + // Parse the data
|
| + bool Parse(const char* str, int n) const;
|
| +
|
| + private:
|
| + void* arg_;
|
| + Parser parser_;
|
| +
|
| + static bool parse_null (const char* str, int n, void* dest);
|
| + static bool parse_char (const char* str, int n, void* dest);
|
| + static bool parse_uchar (const char* str, int n, void* dest);
|
| + static bool parse_float (const char* str, int n, void* dest);
|
| + static bool parse_double (const char* str, int n, void* dest);
|
| + static bool parse_string (const char* str, int n, void* dest);
|
| + static bool parse_stringpiece (const char* str, int n, void* dest);
|
| +
|
| +#define DECLARE_INTEGER_PARSER(name) \
|
| + private: \
|
| + static bool parse_ ## name(const char* str, int n, void* dest); \
|
| + static bool parse_ ## name ## _radix( \
|
| + const char* str, int n, void* dest, int radix); \
|
| + public: \
|
| + static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \
|
| + static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \
|
| + static bool parse_ ## name ## _cradix(const char* str, int n, void* dest)
|
| +
|
| + DECLARE_INTEGER_PARSER(short);
|
| + DECLARE_INTEGER_PARSER(ushort);
|
| + DECLARE_INTEGER_PARSER(int);
|
| + DECLARE_INTEGER_PARSER(uint);
|
| + DECLARE_INTEGER_PARSER(long);
|
| + DECLARE_INTEGER_PARSER(ulong);
|
| + DECLARE_INTEGER_PARSER(longlong);
|
| + DECLARE_INTEGER_PARSER(ulonglong);
|
| +
|
| +#undef DECLARE_INTEGER_PARSER
|
| +};
|
| +
|
| +inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
|
| +inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
|
| +
|
| +inline bool RE2::Arg::Parse(const char* str, int n) const {
|
| + return (*parser_)(str, n, arg_);
|
| +}
|
| +
|
| +// This part of the parser, appropriate only for ints, deals with bases
|
| +#define MAKE_INTEGER_PARSER(type, name) \
|
| + inline RE2::Arg RE2::Hex(type* ptr) { \
|
| + return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \
|
| + inline RE2::Arg RE2::Octal(type* ptr) { \
|
| + return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \
|
| + inline RE2::Arg RE2::CRadix(type* ptr) { \
|
| + return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); }
|
| +
|
| +MAKE_INTEGER_PARSER(short, short);
|
| +MAKE_INTEGER_PARSER(unsigned short, ushort);
|
| +MAKE_INTEGER_PARSER(int, int);
|
| +MAKE_INTEGER_PARSER(unsigned int, uint);
|
| +MAKE_INTEGER_PARSER(long, long);
|
| +MAKE_INTEGER_PARSER(unsigned long, ulong);
|
| +MAKE_INTEGER_PARSER(long long, longlong);
|
| +MAKE_INTEGER_PARSER(unsigned long long, ulonglong);
|
| +
|
| +#undef MAKE_INTEGER_PARSER
|
| +
|
| +} // namespace re2
|
| +
|
| +using re2::RE2;
|
| +
|
| +#endif /* RE2_RE2_H */
|
|
|