Index: third_party/re2/re2/dfa.cc |
diff --git a/third_party/re2/re2/dfa.cc b/third_party/re2/re2/dfa.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..344ef416653697ac98c002a142c1e552da9902ba |
--- /dev/null |
+++ b/third_party/re2/re2/dfa.cc |
@@ -0,0 +1,2088 @@ |
+// Copyright 2008 The RE2 Authors. All Rights Reserved. |
+// Use of this source code is governed by a BSD-style |
+// license that can be found in the LICENSE file. |
+ |
+// A DFA (deterministic finite automaton)-based regular expression search. |
+// |
+// The DFA search has two main parts: the construction of the automaton, |
+// which is represented by a graph of State structures, and the execution |
+// of the automaton over a given input string. |
+// |
+// The basic idea is that the State graph is constructed so that the |
+// execution can simply start with a state s, and then for each byte c in |
+// the input string, execute "s = s->next[c]", checking at each point whether |
+// the current s represents a matching state. |
+// |
+// The simple explanation just given does convey the essence of this code, |
+// but it omits the details of how the State graph gets constructed as well |
+// as some performance-driven optimizations to the execution of the automaton. |
+// All these details are explained in the comments for the code following |
+// the definition of class DFA. |
+// |
+// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. |
+ |
+#include "re2/prog.h" |
+#include "re2/stringpiece.h" |
+#include "util/atomicops.h" |
+#include "util/flags.h" |
+#include "util/sparse_set.h" |
+ |
+#define NO_THREAD_SAFETY_ANALYSIS |
+ |
+DEFINE_bool(re2_dfa_bail_when_slow, true, |
+ "Whether the RE2 DFA should bail out early " |
+ "if the NFA would be faster (for testing)."); |
+ |
+namespace re2 { |
+ |
+#if !defined(__linux__) /* only Linux seems to have memrchr */ |
+static void* memrchr(const void* s, int c, size_t n) { |
+ const unsigned char* p = (const unsigned char*)s; |
+ for (p += n; n > 0; n--) |
+ if (*--p == c) |
+ return (void*)p; |
+ |
+ return NULL; |
+} |
+#endif |
+ |
+// Changing this to true compiles in prints that trace execution of the DFA. |
+// Generates a lot of output -- only useful for debugging. |
+static const bool DebugDFA = false; |
+ |
+// A DFA implementation of a regular expression program. |
+// Since this is entirely a forward declaration mandated by C++, |
+// some of the comments here are better understood after reading |
+// the comments in the sections that follow the DFA definition. |
+class DFA { |
+ public: |
+ DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); |
+ ~DFA(); |
+ bool ok() const { return !init_failed_; } |
+ Prog::MatchKind kind() { return kind_; } |
+ |
+ // Searches for the regular expression in text, which is considered |
+ // as a subsection of context for the purposes of interpreting flags |
+ // like ^ and $ and \A and \z. |
+ // Returns whether a match was found. |
+ // If a match is found, sets *ep to the end point of the best match in text. |
+ // If "anchored", the match must begin at the start of text. |
+ // If "want_earliest_match", the match that ends first is used, not |
+ // necessarily the best one. |
+ // If "run_forward" is true, the DFA runs from text.begin() to text.end(). |
+ // If it is false, the DFA runs from text.end() to text.begin(), |
+ // returning the leftmost end of the match instead of the rightmost one. |
+ // If the DFA cannot complete the search (for example, if it is out of |
+ // memory), it sets *failed and returns false. |
+ bool Search(const StringPiece& text, const StringPiece& context, |
+ bool anchored, bool want_earliest_match, bool run_forward, |
+ bool* failed, const char** ep, vector<int>* matches); |
+ |
+ // Builds out all states for the entire DFA. FOR TESTING ONLY |
+ // Returns number of states. |
+ int BuildAllStates(); |
+ |
+ // Computes min and max for matching strings. Won't return strings |
+ // bigger than maxlen. |
+ bool PossibleMatchRange(string* min, string* max, int maxlen); |
+ |
+ // These data structures are logically private, but C++ makes it too |
+ // difficult to mark them as such. |
+ class Workq; |
+ class RWLocker; |
+ class StateSaver; |
+ |
+ // A single DFA state. The DFA is represented as a graph of these |
+ // States, linked by the next_ pointers. If in state s and reading |
+ // byte c, the next state should be s->next_[c]. |
+ struct State { |
+ inline bool IsMatch() const { return flag_ & kFlagMatch; } |
+ void SaveMatch(vector<int>* v); |
+ |
+ int* inst_; // Instruction pointers in the state. |
+ int ninst_; // # of inst_ pointers. |
+ uint flag_; // Empty string bitfield flags in effect on the way |
+ // into this state, along with kFlagMatch if this |
+ // is a matching state. |
+ State** next_; // Outgoing arrows from State, |
+ // one per input byte class |
+ }; |
+ |
+ enum { |
+ kByteEndText = 256, // imaginary byte at end of text |
+ |
+ kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags |
+ kFlagMatch = 0x1000, // State.flag_: this is a matching state |
+ kFlagLastWord = 0x2000, // State.flag_: last byte was a word char |
+ kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left |
+ }; |
+ |
+ // STL function structures for use with unordered_set. |
+ struct StateEqual { |
+ bool operator()(const State* a, const State* b) const { |
+ if (a == b) |
+ return true; |
+ if (a == NULL || b == NULL) |
+ return false; |
+ if (a->ninst_ != b->ninst_) |
+ return false; |
+ if (a->flag_ != b->flag_) |
+ return false; |
+ for (int i = 0; i < a->ninst_; i++) |
+ if (a->inst_[i] != b->inst_[i]) |
+ return false; |
+ return true; // they're equal |
+ } |
+ }; |
+ struct StateHash { |
+ size_t operator()(const State* a) const { |
+ if (a == NULL) |
+ return 0; |
+ const char* s = reinterpret_cast<const char*>(a->inst_); |
+ int len = a->ninst_ * sizeof a->inst_[0]; |
+ if (sizeof(size_t) == sizeof(uint32)) |
+ return Hash32StringWithSeed(s, len, a->flag_); |
+ else |
+ return Hash64StringWithSeed(s, len, a->flag_); |
+ } |
+ }; |
+ |
+ typedef unordered_set<State*, StateHash, StateEqual> StateSet; |
+ |
+ |
+ private: |
+ // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) |
+ enum { |
+ kFbUnknown = -1, // No analysis has been performed. |
+ kFbMany = -2, // Many bytes will lead out of this state. |
+ kFbNone = -3, // No bytes lead out of this state. |
+ }; |
+ |
+ enum { |
+ // Indices into start_ for unanchored searches. |
+ // Add kStartAnchored for anchored searches. |
+ kStartBeginText = 0, // text at beginning of context |
+ kStartBeginLine = 2, // text at beginning of line |
+ kStartAfterWordChar = 4, // text follows a word character |
+ kStartAfterNonWordChar = 6, // text follows non-word character |
+ kMaxStart = 8, |
+ |
+ kStartAnchored = 1, |
+ }; |
+ |
+ // Resets the DFA State cache, flushing all saved State* information. |
+ // Releases and reacquires cache_mutex_ via cache_lock, so any |
+ // State* existing before the call are not valid after the call. |
+ // Use a StateSaver to preserve important states across the call. |
+ // cache_mutex_.r <= L < mutex_ |
+ // After: cache_mutex_.w <= L < mutex_ |
+ void ResetCache(RWLocker* cache_lock); |
+ |
+ // Looks up and returns the State corresponding to a Workq. |
+ // L >= mutex_ |
+ State* WorkqToCachedState(Workq* q, uint flag); |
+ |
+ // Looks up and returns a State matching the inst, ninst, and flag. |
+ // L >= mutex_ |
+ State* CachedState(int* inst, int ninst, uint flag); |
+ |
+ // Clear the cache entirely. |
+ // Must hold cache_mutex_.w or be in destructor. |
+ void ClearCache(); |
+ |
+ // Converts a State into a Workq: the opposite of WorkqToCachedState. |
+ // L >= mutex_ |
+ static void StateToWorkq(State* s, Workq* q); |
+ |
+ // Runs a State on a given byte, returning the next state. |
+ State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ |
+ State* RunStateOnByte(State*, int); // L >= mutex_ |
+ |
+ // Runs a Workq on a given byte followed by a set of empty-string flags, |
+ // producing a new Workq in nq. If a match instruction is encountered, |
+ // sets *ismatch to true. |
+ // L >= mutex_ |
+ void RunWorkqOnByte(Workq* q, Workq* nq, |
+ int c, uint flag, bool* ismatch, |
+ Prog::MatchKind kind, |
+ int new_byte_loop); |
+ |
+ // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. |
+ // L >= mutex_ |
+ void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); |
+ |
+ // Adds the instruction id to the Workq, following empty arrows |
+ // according to flag. |
+ // L >= mutex_ |
+ void AddToQueue(Workq* q, int id, uint flag); |
+ |
+ // For debugging, returns a text representation of State. |
+ static string DumpState(State* state); |
+ |
+ // For debugging, returns a text representation of a Workq. |
+ static string DumpWorkq(Workq* q); |
+ |
+ // Search parameters |
+ struct SearchParams { |
+ SearchParams(const StringPiece& text, const StringPiece& context, |
+ RWLocker* cache_lock) |
+ : text(text), context(context), |
+ anchored(false), |
+ want_earliest_match(false), |
+ run_forward(false), |
+ start(NULL), |
+ firstbyte(kFbUnknown), |
+ cache_lock(cache_lock), |
+ failed(false), |
+ ep(NULL), |
+ matches(NULL) { } |
+ |
+ StringPiece text; |
+ StringPiece context; |
+ bool anchored; |
+ bool want_earliest_match; |
+ bool run_forward; |
+ State* start; |
+ int firstbyte; |
+ RWLocker *cache_lock; |
+ bool failed; // "out" parameter: whether search gave up |
+ const char* ep; // "out" parameter: end pointer for match |
+ vector<int>* matches; |
+ |
+ private: |
+ DISALLOW_EVIL_CONSTRUCTORS(SearchParams); |
+ }; |
+ |
+ // Before each search, the parameters to Search are analyzed by |
+ // AnalyzeSearch to determine the state in which to start and the |
+ // "firstbyte" for that state, if any. |
+ struct StartInfo { |
+ StartInfo() : start(NULL), firstbyte(kFbUnknown) { } |
+ State* start; |
+ volatile int firstbyte; |
+ }; |
+ |
+ // Fills in params->start and params->firstbyte using |
+ // the other search parameters. Returns true on success, |
+ // false on failure. |
+ // cache_mutex_.r <= L < mutex_ |
+ bool AnalyzeSearch(SearchParams* params); |
+ bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); |
+ |
+ // The generic search loop, inlined to create specialized versions. |
+ // cache_mutex_.r <= L < mutex_ |
+ // Might unlock and relock cache_mutex_ via params->cache_lock. |
+ inline bool InlinedSearchLoop(SearchParams* params, |
+ bool have_firstbyte, |
+ bool want_earliest_match, |
+ bool run_forward); |
+ |
+ // The specialized versions of InlinedSearchLoop. The three letters |
+ // at the ends of the name denote the true/false values used as the |
+ // last three parameters of InlinedSearchLoop. |
+ // cache_mutex_.r <= L < mutex_ |
+ // Might unlock and relock cache_mutex_ via params->cache_lock. |
+ bool SearchFFF(SearchParams* params); |
+ bool SearchFFT(SearchParams* params); |
+ bool SearchFTF(SearchParams* params); |
+ bool SearchFTT(SearchParams* params); |
+ bool SearchTFF(SearchParams* params); |
+ bool SearchTFT(SearchParams* params); |
+ bool SearchTTF(SearchParams* params); |
+ bool SearchTTT(SearchParams* params); |
+ |
+ // The main search loop: calls an appropriate specialized version of |
+ // InlinedSearchLoop. |
+ // cache_mutex_.r <= L < mutex_ |
+ // Might unlock and relock cache_mutex_ via params->cache_lock. |
+ bool FastSearchLoop(SearchParams* params); |
+ |
+ // For debugging, a slow search loop that calls InlinedSearchLoop |
+ // directly -- because the booleans passed are not constants, the |
+ // loop is not specialized like the SearchFFF etc. versions, so it |
+ // runs much more slowly. Useful only for debugging. |
+ // cache_mutex_.r <= L < mutex_ |
+ // Might unlock and relock cache_mutex_ via params->cache_lock. |
+ bool SlowSearchLoop(SearchParams* params); |
+ |
+ // Looks up bytes in bytemap_ but handles case c == kByteEndText too. |
+ int ByteMap(int c) { |
+ if (c == kByteEndText) |
+ return prog_->bytemap_range(); |
+ return prog_->bytemap()[c]; |
+ } |
+ |
+ // Constant after initialization. |
+ Prog* prog_; // The regular expression program to run. |
+ Prog::MatchKind kind_; // The kind of DFA. |
+ int start_unanchored_; // start of unanchored program |
+ bool init_failed_; // initialization failed (out of memory) |
+ |
+ Mutex mutex_; // mutex_ >= cache_mutex_.r |
+ |
+ // Scratch areas, protected by mutex_. |
+ Workq* q0_; // Two pre-allocated work queues. |
+ Workq* q1_; |
+ int* astack_; // Pre-allocated stack for AddToQueue |
+ int nastack_; |
+ |
+ // State* cache. Many threads use and add to the cache simultaneously, |
+ // holding cache_mutex_ for reading and mutex_ (above) when adding. |
+ // If the cache fills and needs to be discarded, the discarding is done |
+ // while holding cache_mutex_ for writing, to avoid interrupting other |
+ // readers. Any State* pointers are only valid while cache_mutex_ |
+ // is held. |
+ Mutex cache_mutex_; |
+ int64 mem_budget_; // Total memory budget for all States. |
+ int64 state_budget_; // Amount of memory remaining for new States. |
+ StateSet state_cache_; // All States computed so far. |
+ StartInfo start_[kMaxStart]; |
+ bool cache_warned_; // have printed to LOG(INFO) about the cache |
+}; |
+ |
+// Shorthand for casting to uint8*. |
+static inline const uint8* BytePtr(const void* v) { |
+ return reinterpret_cast<const uint8*>(v); |
+} |
+ |
+// Work queues |
+ |
+// Marks separate thread groups of different priority |
+// in the work queue when in leftmost-longest matching mode. |
+#define Mark (-1) |
+ |
+// Internally, the DFA uses a sparse array of |
+// program instruction pointers as a work queue. |
+// In leftmost longest mode, marks separate sections |
+// of workq that started executing at different |
+// locations in the string (earlier locations first). |
+class DFA::Workq : public SparseSet { |
+ public: |
+ // Constructor: n is number of normal slots, maxmark number of mark slots. |
+ Workq(int n, int maxmark) : |
+ SparseSet(n+maxmark), |
+ n_(n), |
+ maxmark_(maxmark), |
+ nextmark_(n), |
+ last_was_mark_(true) { |
+ } |
+ |
+ bool is_mark(int i) { return i >= n_; } |
+ |
+ int maxmark() { return maxmark_; } |
+ |
+ void clear() { |
+ SparseSet::clear(); |
+ nextmark_ = n_; |
+ } |
+ |
+ void mark() { |
+ if (last_was_mark_) |
+ return; |
+ last_was_mark_ = false; |
+ SparseSet::insert_new(nextmark_++); |
+ } |
+ |
+ int size() { |
+ return n_ + maxmark_; |
+ } |
+ |
+ void insert(int id) { |
+ if (contains(id)) |
+ return; |
+ insert_new(id); |
+ } |
+ |
+ void insert_new(int id) { |
+ last_was_mark_ = false; |
+ SparseSet::insert_new(id); |
+ } |
+ |
+ private: |
+ int n_; // size excluding marks |
+ int maxmark_; // maximum number of marks |
+ int nextmark_; // id of next mark |
+ bool last_was_mark_; // last inserted was mark |
+ DISALLOW_EVIL_CONSTRUCTORS(Workq); |
+}; |
+ |
+DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) |
+ : prog_(prog), |
+ kind_(kind), |
+ init_failed_(false), |
+ q0_(NULL), |
+ q1_(NULL), |
+ astack_(NULL), |
+ mem_budget_(max_mem), |
+ cache_warned_(false) { |
+ if (DebugDFA) |
+ fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); |
+ int nmark = 0; |
+ start_unanchored_ = 0; |
+ if (kind_ == Prog::kLongestMatch) { |
+ nmark = prog->size(); |
+ start_unanchored_ = prog->start_unanchored(); |
+ } |
+ nastack_ = 2 * prog->size() + nmark; |
+ |
+ // Account for space needed for DFA, q0, q1, astack. |
+ mem_budget_ -= sizeof(DFA); |
+ mem_budget_ -= (prog_->size() + nmark) * |
+ (sizeof(int)+sizeof(int)) * 2; // q0, q1 |
+ mem_budget_ -= nastack_ * sizeof(int); // astack |
+ if (mem_budget_ < 0) { |
+ LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", |
+ prog_->size(), max_mem); |
+ init_failed_ = true; |
+ return; |
+ } |
+ |
+ state_budget_ = mem_budget_; |
+ |
+ // Make sure there is a reasonable amount of working room left. |
+ // At minimum, the search requires room for two states in order |
+ // to limp along, restarting frequently. We'll get better performance |
+ // if there is room for a larger number of states, say 20. |
+ int one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + |
+ (prog_->bytemap_range()+1)*sizeof(State*); |
+ if (state_budget_ < 20*one_state) { |
+ LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", |
+ prog_->size(), max_mem); |
+ init_failed_ = true; |
+ return; |
+ } |
+ |
+ q0_ = new Workq(prog->size(), nmark); |
+ q1_ = new Workq(prog->size(), nmark); |
+ astack_ = new int[nastack_]; |
+} |
+ |
+DFA::~DFA() { |
+ delete q0_; |
+ delete q1_; |
+ delete[] astack_; |
+ ClearCache(); |
+} |
+ |
+// In the DFA state graph, s->next[c] == NULL means that the |
+// state has not yet been computed and needs to be. We need |
+// a different special value to signal that s->next[c] is a |
+// state that can never lead to a match (and thus the search |
+// can be called off). Hence DeadState. |
+#define DeadState reinterpret_cast<State*>(1) |
+ |
+// Signals that the rest of the string matches no matter what it is. |
+#define FullMatchState reinterpret_cast<State*>(2) |
+ |
+#define SpecialStateMax FullMatchState |
+ |
+// Debugging printouts |
+ |
+// For debugging, returns a string representation of the work queue. |
+string DFA::DumpWorkq(Workq* q) { |
+ string s; |
+ const char* sep = ""; |
+ for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { |
+ if (q->is_mark(*it)) { |
+ StringAppendF(&s, "|"); |
+ sep = ""; |
+ } else { |
+ StringAppendF(&s, "%s%d", sep, *it); |
+ sep = ","; |
+ } |
+ } |
+ return s; |
+} |
+ |
+// For debugging, returns a string representation of the state. |
+string DFA::DumpState(State* state) { |
+ if (state == NULL) |
+ return "_"; |
+ if (state == DeadState) |
+ return "X"; |
+ if (state == FullMatchState) |
+ return "*"; |
+ string s; |
+ const char* sep = ""; |
+ StringAppendF(&s, "(%p)", state); |
+ for (int i = 0; i < state->ninst_; i++) { |
+ if (state->inst_[i] == Mark) { |
+ StringAppendF(&s, "|"); |
+ sep = ""; |
+ } else { |
+ StringAppendF(&s, "%s%d", sep, state->inst_[i]); |
+ sep = ","; |
+ } |
+ } |
+ StringAppendF(&s, " flag=%#x", state->flag_); |
+ return s; |
+} |
+ |
+////////////////////////////////////////////////////////////////////// |
+// |
+// DFA state graph construction. |
+// |
+// The DFA state graph is a heavily-linked collection of State* structures. |
+// The state_cache_ is a set of all the State structures ever allocated, |
+// so that if the same state is reached by two different paths, |
+// the same State structure can be used. This reduces allocation |
+// requirements and also avoids duplication of effort across the two |
+// identical states. |
+// |
+// A State is defined by an ordered list of instruction ids and a flag word. |
+// |
+// The choice of an ordered list of instructions differs from a typical |
+// textbook DFA implementation, which would use an unordered set. |
+// Textbook descriptions, however, only care about whether |
+// the DFA matches, not where it matches in the text. To decide where the |
+// DFA matches, we need to mimic the behavior of the dominant backtracking |
+// implementations like PCRE, which try one possible regular expression |
+// execution, then another, then another, stopping when one of them succeeds. |
+// The DFA execution tries these many executions in parallel, representing |
+// each by an instruction id. These pointers are ordered in the State.inst_ |
+// list in the same order that the executions would happen in a backtracking |
+// search: if a match is found during execution of inst_[2], inst_[i] for i>=3 |
+// can be discarded. |
+// |
+// Textbooks also typically do not consider context-aware empty string operators |
+// like ^ or $. These are handled by the flag word, which specifies the set |
+// of empty-string operators that should be matched when executing at the |
+// current text position. These flag bits are defined in prog.h. |
+// The flag word also contains two DFA-specific bits: kFlagMatch if the state |
+// is a matching state (one that reached a kInstMatch in the program) |
+// and kFlagLastWord if the last processed byte was a word character, for the |
+// implementation of \B and \b. |
+// |
+// The flag word also contains, shifted up 16 bits, the bits looked for by |
+// any kInstEmptyWidth instructions in the state. These provide a useful |
+// summary indicating when new flags might be useful. |
+// |
+// The permanent representation of a State's instruction ids is just an array, |
+// but while a state is being analyzed, these instruction ids are represented |
+// as a Workq, which is an array that allows iteration in insertion order. |
+ |
+// NOTE(rsc): The choice of State construction determines whether the DFA |
+// mimics backtracking implementations (so-called leftmost first matching) or |
+// traditional DFA implementations (so-called leftmost longest matching as |
+// prescribed by POSIX). This implementation chooses to mimic the |
+// backtracking implementations, because we want to replace PCRE. To get |
+// POSIX behavior, the states would need to be considered not as a simple |
+// ordered list of instruction ids, but as a list of unordered sets of instruction |
+// ids. A match by a state in one set would inhibit the running of sets |
+// farther down the list but not other instruction ids in the same set. Each |
+// set would correspond to matches beginning at a given point in the string. |
+// This is implemented by separating different sets with Mark pointers. |
+ |
+// Looks in the State cache for a State matching q, flag. |
+// If one is found, returns it. If one is not found, allocates one, |
+// inserts it in the cache, and returns it. |
+DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { |
+ if (DEBUG_MODE) |
+ mutex_.AssertHeld(); |
+ |
+ // Construct array of instruction ids for the new state. |
+ // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: |
+ // those are the only operators with any effect in |
+ // RunWorkqOnEmptyString or RunWorkqOnByte. |
+ int* inst = new int[q->size()]; |
+ int n = 0; |
+ uint needflags = 0; // flags needed by kInstEmptyWidth instructions |
+ bool sawmatch = false; // whether queue contains guaranteed kInstMatch |
+ bool sawmark = false; // whether queue contains a Mark |
+ if (DebugDFA) |
+ fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); |
+ for (Workq::iterator it = q->begin(); it != q->end(); ++it) { |
+ int id = *it; |
+ if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) |
+ break; |
+ if (q->is_mark(id)) { |
+ if (n > 0 && inst[n-1] != Mark) { |
+ sawmark = true; |
+ inst[n++] = Mark; |
+ } |
+ continue; |
+ } |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ case kInstAltMatch: |
+ // This state will continue to a match no matter what |
+ // the rest of the input is. If it is the highest priority match |
+ // being considered, return the special FullMatchState |
+ // to indicate that it's all matches from here out. |
+ if (kind_ != Prog::kManyMatch && |
+ (kind_ != Prog::kFirstMatch || |
+ (it == q->begin() && ip->greedy(prog_))) && |
+ (kind_ != Prog::kLongestMatch || !sawmark) && |
+ (flag & kFlagMatch)) { |
+ delete[] inst; |
+ if (DebugDFA) |
+ fprintf(stderr, " -> FullMatchState\n"); |
+ return FullMatchState; |
+ } |
+ // Fall through. |
+ case kInstByteRange: // These are useful. |
+ case kInstEmptyWidth: |
+ case kInstMatch: |
+ case kInstAlt: // Not useful, but necessary [*] |
+ inst[n++] = *it; |
+ if (ip->opcode() == kInstEmptyWidth) |
+ needflags |= ip->empty(); |
+ if (ip->opcode() == kInstMatch && !prog_->anchor_end()) |
+ sawmatch = true; |
+ break; |
+ |
+ default: // The rest are not. |
+ break; |
+ } |
+ |
+ // [*] kInstAlt would seem useless to record in a state, since |
+ // we've already followed both its arrows and saved all the |
+ // interesting states we can reach from there. The problem |
+ // is that one of the empty-width instructions might lead |
+ // back to the same kInstAlt (if an empty-width operator is starred), |
+ // producing a different evaluation order depending on whether |
+ // we keep the kInstAlt to begin with. Sigh. |
+ // A specific case that this affects is /(^|a)+/ matching "a". |
+ // If we don't save the kInstAlt, we will match the whole "a" (0,1) |
+ // but in fact the correct leftmost-first match is the leading "" (0,0). |
+ } |
+ DCHECK_LE(n, q->size()); |
+ if (n > 0 && inst[n-1] == Mark) |
+ n--; |
+ |
+ // If there are no empty-width instructions waiting to execute, |
+ // then the extra flag bits will not be used, so there is no |
+ // point in saving them. (Discarding them reduces the number |
+ // of distinct states.) |
+ if (needflags == 0) |
+ flag &= kFlagMatch; |
+ |
+ // NOTE(rsc): The code above cannot do flag &= needflags, |
+ // because if the right flags were present to pass the current |
+ // kInstEmptyWidth instructions, new kInstEmptyWidth instructions |
+ // might be reached that in turn need different flags. |
+ // The only sure thing is that if there are no kInstEmptyWidth |
+ // instructions at all, no flags will be needed. |
+ // We could do the extra work to figure out the full set of |
+ // possibly needed flags by exploring past the kInstEmptyWidth |
+ // instructions, but the check above -- are any flags needed |
+ // at all? -- handles the most common case. More fine-grained |
+ // analysis can only be justified by measurements showing that |
+ // too many redundant states are being allocated. |
+ |
+ // If there are no Insts in the list, it's a dead state, |
+ // which is useful to signal with a special pointer so that |
+ // the execution loop can stop early. This is only okay |
+ // if the state is *not* a matching state. |
+ if (n == 0 && flag == 0) { |
+ delete[] inst; |
+ if (DebugDFA) |
+ fprintf(stderr, " -> DeadState\n"); |
+ return DeadState; |
+ } |
+ |
+ // If we're in longest match mode, the state is a sequence of |
+ // unordered state sets separated by Marks. Sort each set |
+ // to canonicalize, to reduce the number of distinct sets stored. |
+ if (kind_ == Prog::kLongestMatch) { |
+ int* ip = inst; |
+ int* ep = ip + n; |
+ while (ip < ep) { |
+ int* markp = ip; |
+ while (markp < ep && *markp != Mark) |
+ markp++; |
+ sort(ip, markp); |
+ if (markp < ep) |
+ markp++; |
+ ip = markp; |
+ } |
+ } |
+ |
+ // Save the needed empty-width flags in the top bits for use later. |
+ flag |= needflags << kFlagNeedShift; |
+ |
+ State* state = CachedState(inst, n, flag); |
+ delete[] inst; |
+ return state; |
+} |
+ |
+// Looks in the State cache for a State matching inst, ninst, flag. |
+// If one is found, returns it. If one is not found, allocates one, |
+// inserts it in the cache, and returns it. |
+DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { |
+ if (DEBUG_MODE) |
+ mutex_.AssertHeld(); |
+ |
+ // Look in the cache for a pre-existing state. |
+ State state = { inst, ninst, flag, NULL }; |
+ StateSet::iterator it = state_cache_.find(&state); |
+ if (it != state_cache_.end()) { |
+ if (DebugDFA) |
+ fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); |
+ return *it; |
+ } |
+ |
+ // Must have enough memory for new state. |
+ // In addition to what we're going to allocate, |
+ // the state cache hash table seems to incur about 32 bytes per |
+ // State*, empirically. |
+ const int kStateCacheOverhead = 32; |
+ int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
+ int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); |
+ if (mem_budget_ < mem + kStateCacheOverhead) { |
+ mem_budget_ = -1; |
+ return NULL; |
+ } |
+ mem_budget_ -= mem + kStateCacheOverhead; |
+ |
+ // Allocate new state, along with room for next and inst. |
+ char* space = new char[mem]; |
+ State* s = reinterpret_cast<State*>(space); |
+ s->next_ = reinterpret_cast<State**>(s + 1); |
+ s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); |
+ memset(s->next_, 0, nnext*sizeof s->next_[0]); |
+ memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); |
+ s->ninst_ = ninst; |
+ s->flag_ = flag; |
+ if (DebugDFA) |
+ fprintf(stderr, " -> %s\n", DumpState(s).c_str()); |
+ |
+ // Put state in cache and return it. |
+ state_cache_.insert(s); |
+ return s; |
+} |
+ |
+// Clear the cache. Must hold cache_mutex_.w or be in destructor. |
+void DFA::ClearCache() { |
+ // In case state_cache_ doesn't support deleting entries |
+ // during iteration, copy into a vector and then delete. |
+ vector<State*> v; |
+ v.reserve(state_cache_.size()); |
+ for (StateSet::iterator it = state_cache_.begin(); |
+ it != state_cache_.end(); ++it) |
+ v.push_back(*it); |
+ state_cache_.clear(); |
+ for (int i = 0; i < v.size(); i++) |
+ delete[] reinterpret_cast<const char*>(v[i]); |
+} |
+ |
+// Copies insts in state s to the work queue q. |
+void DFA::StateToWorkq(State* s, Workq* q) { |
+ q->clear(); |
+ for (int i = 0; i < s->ninst_; i++) { |
+ if (s->inst_[i] == Mark) |
+ q->mark(); |
+ else |
+ q->insert_new(s->inst_[i]); |
+ } |
+} |
+ |
+// Adds ip to the work queue, following empty arrows according to flag |
+// and expanding kInstAlt instructions (two-target gotos). |
+void DFA::AddToQueue(Workq* q, int id, uint flag) { |
+ |
+ // Use astack_ to hold our stack of states yet to process. |
+ // It is sized to have room for nastack_ == 2*prog->size() + nmark |
+ // instructions, which is enough: each instruction can be |
+ // processed by the switch below only once, and the processing |
+ // pushes at most two instructions plus maybe a mark. |
+ // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) |
+ int* stk = astack_; |
+ int nstk = 0; |
+ |
+ stk[nstk++] = id; |
+ while (nstk > 0) { |
+ DCHECK_LE(nstk, nastack_); |
+ id = stk[--nstk]; |
+ |
+ if (id == Mark) { |
+ q->mark(); |
+ continue; |
+ } |
+ |
+ if (id == 0) |
+ continue; |
+ |
+ // If ip is already on the queue, nothing to do. |
+ // Otherwise add it. We don't actually keep all the ones |
+ // that get added -- for example, kInstAlt is ignored |
+ // when on a work queue -- but adding all ip's here |
+ // increases the likelihood of q->contains(id), |
+ // reducing the amount of duplicated work. |
+ if (q->contains(id)) |
+ continue; |
+ q->insert_new(id); |
+ |
+ // Process instruction. |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ case kInstFail: // can't happen: discarded above |
+ break; |
+ |
+ case kInstByteRange: // just save these on the queue |
+ case kInstMatch: |
+ break; |
+ |
+ case kInstCapture: // DFA treats captures as no-ops. |
+ case kInstNop: |
+ stk[nstk++] = ip->out(); |
+ break; |
+ |
+ case kInstAlt: // two choices: expand both, in order |
+ case kInstAltMatch: |
+ // Want to visit out then out1, so push on stack in reverse order. |
+ // This instruction is the [00-FF]* loop at the beginning of |
+ // a leftmost-longest unanchored search, separate out from out1 |
+ // with a Mark, so that out1's threads (which will start farther |
+ // to the right in the string being searched) are lower priority |
+ // than the current ones. |
+ stk[nstk++] = ip->out1(); |
+ if (q->maxmark() > 0 && |
+ id == prog_->start_unanchored() && id != prog_->start()) |
+ stk[nstk++] = Mark; |
+ stk[nstk++] = ip->out(); |
+ break; |
+ |
+ case kInstEmptyWidth: |
+ if ((ip->empty() & flag) == ip->empty()) |
+ stk[nstk++] = ip->out(); |
+ break; |
+ } |
+ } |
+} |
+ |
+// Running of work queues. In the work queue, order matters: |
+// the queue is sorted in priority order. If instruction i comes before j, |
+// then the instructions that i produces during the run must come before |
+// the ones that j produces. In order to keep this invariant, all the |
+// work queue runners have to take an old queue to process and then |
+// also a new queue to fill in. It's not acceptable to add to the end of |
+// an existing queue, because new instructions will not end up in the |
+// correct position. |
+ |
+// Runs the work queue, processing the empty strings indicated by flag. |
+// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match |
+// both ^ and $. It is important that callers pass all flags at once: |
+// processing both ^ and $ is not the same as first processing only ^ |
+// and then processing only $. Doing the two-step sequence won't match |
+// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior |
+// exhibited by existing implementations). |
+void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { |
+ newq->clear(); |
+ for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
+ if (oldq->is_mark(*i)) |
+ AddToQueue(newq, Mark, flag); |
+ else |
+ AddToQueue(newq, *i, flag); |
+ } |
+} |
+ |
+// Runs the work queue, processing the single byte c followed by any empty |
+// strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, |
+// means to match c$. Sets the bool *ismatch to true if the end of the |
+// regular expression program has been reached (the regexp has matched). |
+void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, |
+ int c, uint flag, bool* ismatch, |
+ Prog::MatchKind kind, |
+ int new_byte_loop) { |
+ if (DEBUG_MODE) |
+ mutex_.AssertHeld(); |
+ |
+ newq->clear(); |
+ for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
+ if (oldq->is_mark(*i)) { |
+ if (*ismatch) |
+ return; |
+ newq->mark(); |
+ continue; |
+ } |
+ int id = *i; |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ case kInstFail: // never succeeds |
+ case kInstCapture: // already followed |
+ case kInstNop: // already followed |
+ case kInstAlt: // already followed |
+ case kInstAltMatch: // already followed |
+ case kInstEmptyWidth: // already followed |
+ break; |
+ |
+ case kInstByteRange: // can follow if c is in range |
+ if (ip->Matches(c)) |
+ AddToQueue(newq, ip->out(), flag); |
+ break; |
+ |
+ case kInstMatch: |
+ if (prog_->anchor_end() && c != kByteEndText) |
+ break; |
+ *ismatch = true; |
+ if (kind == Prog::kFirstMatch) { |
+ // Can stop processing work queue since we found a match. |
+ return; |
+ } |
+ break; |
+ } |
+ } |
+ |
+ if (DebugDFA) |
+ fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), |
+ c, flag, DumpWorkq(newq).c_str(), *ismatch); |
+} |
+ |
+// Processes input byte c in state, returning new state. |
+// Caller does not hold mutex. |
+DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { |
+ // Keep only one RunStateOnByte going |
+ // even if the DFA is being run by multiple threads. |
+ MutexLock l(&mutex_); |
+ return RunStateOnByte(state, c); |
+} |
+ |
+// Processes input byte c in state, returning new state. |
+DFA::State* DFA::RunStateOnByte(State* state, int c) { |
+ if (DEBUG_MODE) |
+ mutex_.AssertHeld(); |
+ if (state <= SpecialStateMax) { |
+ if (state == FullMatchState) { |
+ // It is convenient for routines like PossibleMatchRange |
+ // if we implement RunStateOnByte for FullMatchState: |
+ // once you get into this state you never get out, |
+ // so it's pretty easy. |
+ return FullMatchState; |
+ } |
+ if (state == DeadState) { |
+ LOG(DFATAL) << "DeadState in RunStateOnByte"; |
+ return NULL; |
+ } |
+ if (state == NULL) { |
+ LOG(DFATAL) << "NULL state in RunStateOnByte"; |
+ return NULL; |
+ } |
+ LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; |
+ return NULL; |
+ } |
+ |
+ // If someone else already computed this, return it. |
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering |
+ if (state->next_[ByteMap(c)]) |
+ return state->next_[ByteMap(c)]; |
+ |
+ // Convert state into Workq. |
+ StateToWorkq(state, q0_); |
+ |
+ // Flags marking the kinds of empty-width things (^ $ etc) |
+ // around this byte. Before the byte we have the flags recorded |
+ // in the State structure itself. After the byte we have |
+ // nothing yet (but that will change: read on). |
+ uint needflag = state->flag_ >> kFlagNeedShift; |
+ uint beforeflag = state->flag_ & kFlagEmptyMask; |
+ uint oldbeforeflag = beforeflag; |
+ uint afterflag = 0; |
+ |
+ if (c == '\n') { |
+ // Insert implicit $ and ^ around \n |
+ beforeflag |= kEmptyEndLine; |
+ afterflag |= kEmptyBeginLine; |
+ } |
+ |
+ if (c == kByteEndText) { |
+ // Insert implicit $ and \z before the fake "end text" byte. |
+ beforeflag |= kEmptyEndLine | kEmptyEndText; |
+ } |
+ |
+ // The state flag kFlagLastWord says whether the last |
+ // byte processed was a word character. Use that info to |
+ // insert empty-width (non-)word boundaries. |
+ bool islastword = state->flag_ & kFlagLastWord; |
+ bool isword = (c != kByteEndText && Prog::IsWordChar(c)); |
+ if (isword == islastword) |
+ beforeflag |= kEmptyNonWordBoundary; |
+ else |
+ beforeflag |= kEmptyWordBoundary; |
+ |
+ // Okay, finally ready to run. |
+ // Only useful to rerun on empty string if there are new, useful flags. |
+ if (beforeflag & ~oldbeforeflag & needflag) { |
+ RunWorkqOnEmptyString(q0_, q1_, beforeflag); |
+ swap(q0_, q1_); |
+ } |
+ bool ismatch = false; |
+ RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_); |
+ swap(q0_, q1_); |
+ |
+ // Save afterflag along with ismatch and isword in new state. |
+ uint flag = afterflag; |
+ if (ismatch) |
+ flag |= kFlagMatch; |
+ if (isword) |
+ flag |= kFlagLastWord; |
+ |
+ State* ns = WorkqToCachedState(q0_, flag); |
+ |
+ // Write barrier before updating state->next_ so that the |
+ // main search loop can proceed without any locking, for speed. |
+ // (Otherwise it would need one mutex operation per input byte.) |
+ // The annotations below tell race detectors that: |
+ // a) the access to next_ should be ignored, |
+ // b) 'ns' is properly published. |
+ WriteMemoryBarrier(); // Flush ns before linking to it. |
+ ANNOTATE_PUBLISH_MEMORY_RANGE(ns, sizeof(*ns)); |
+ |
+ ANNOTATE_IGNORE_WRITES_BEGIN(); |
+ state->next_[ByteMap(c)] = ns; |
+ ANNOTATE_IGNORE_WRITES_END(); |
+ return ns; |
+} |
+ |
+ |
+////////////////////////////////////////////////////////////////////// |
+// DFA cache reset. |
+ |
+// Reader-writer lock helper. |
+// |
+// The DFA uses a reader-writer mutex to protect the state graph itself. |
+// Traversing the state graph requires holding the mutex for reading, |
+// and discarding the state graph and starting over requires holding the |
+// lock for writing. If a search needs to expand the graph but is out |
+// of memory, it will need to drop its read lock and then acquire the |
+// write lock. Since it cannot then atomically downgrade from write lock |
+// to read lock, it runs the rest of the search holding the write lock. |
+// (This probably helps avoid repeated contention, but really the decision |
+// is forced by the Mutex interface.) It's a bit complicated to keep |
+// track of whether the lock is held for reading or writing and thread |
+// that through the search, so instead we encapsulate it in the RWLocker |
+// and pass that around. |
+ |
+class DFA::RWLocker { |
+ public: |
+ explicit RWLocker(Mutex* mu); |
+ ~RWLocker(); |
+ |
+ // If the lock is only held for reading right now, |
+ // drop the read lock and re-acquire for writing. |
+ // Subsequent calls to LockForWriting are no-ops. |
+ // Notice that the lock is *released* temporarily. |
+ void LockForWriting(); |
+ |
+ // Returns whether the lock is already held for writing. |
+ bool IsLockedForWriting() { |
+ return writing_; |
+ } |
+ |
+ private: |
+ Mutex* mu_; |
+ bool writing_; |
+ |
+ DISALLOW_EVIL_CONSTRUCTORS(RWLocker); |
+}; |
+ |
+DFA::RWLocker::RWLocker(Mutex* mu) |
+ : mu_(mu), writing_(false) { |
+ |
+ mu_->ReaderLock(); |
+} |
+ |
+// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations |
+// does not support lock upgrade. |
+void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { |
+ if (!writing_) { |
+ mu_->ReaderUnlock(); |
+ mu_->Lock(); |
+ writing_ = true; |
+ } |
+} |
+ |
+DFA::RWLocker::~RWLocker() { |
+ if (writing_) |
+ mu_->WriterUnlock(); |
+ else |
+ mu_->ReaderUnlock(); |
+} |
+ |
+ |
+// When the DFA's State cache fills, we discard all the states in the |
+// cache and start over. Many threads can be using and adding to the |
+// cache at the same time, so we synchronize using the cache_mutex_ |
+// to keep from stepping on other threads. Specifically, all the |
+// threads using the current cache hold cache_mutex_ for reading. |
+// When a thread decides to flush the cache, it drops cache_mutex_ |
+// and then re-acquires it for writing. That ensures there are no |
+// other threads accessing the cache anymore. The rest of the search |
+// runs holding cache_mutex_ for writing, avoiding any contention |
+// with or cache pollution caused by other threads. |
+ |
+void DFA::ResetCache(RWLocker* cache_lock) { |
+ // Re-acquire the cache_mutex_ for writing (exclusive use). |
+ bool was_writing = cache_lock->IsLockedForWriting(); |
+ cache_lock->LockForWriting(); |
+ |
+ // If we already held cache_mutex_ for writing, it means |
+ // this invocation of Search() has already reset the |
+ // cache once already. That's a pretty clear indication |
+ // that the cache is too small. Warn about that, once. |
+ // TODO(rsc): Only warn if state_cache_.size() < some threshold. |
+ if (was_writing && !cache_warned_) { |
+ LOG(INFO) << "DFA memory cache could be too small: " |
+ << "only room for " << state_cache_.size() << " states."; |
+ cache_warned_ = true; |
+ } |
+ |
+ // Clear the cache, reset the memory budget. |
+ for (int i = 0; i < kMaxStart; i++) { |
+ start_[i].start = NULL; |
+ start_[i].firstbyte = kFbUnknown; |
+ } |
+ ClearCache(); |
+ mem_budget_ = state_budget_; |
+} |
+ |
+// Typically, a couple States do need to be preserved across a cache |
+// reset, like the State at the current point in the search. |
+// The StateSaver class helps keep States across cache resets. |
+// It makes a copy of the state's guts outside the cache (before the reset) |
+// and then can be asked, after the reset, to recreate the State |
+// in the new cache. For example, in a DFA method ("this" is a DFA): |
+// |
+// StateSaver saver(this, s); |
+// ResetCache(cache_lock); |
+// s = saver.Restore(); |
+// |
+// The saver should always have room in the cache to re-create the state, |
+// because resetting the cache locks out all other threads, and the cache |
+// is known to have room for at least a couple states (otherwise the DFA |
+// constructor fails). |
+ |
+class DFA::StateSaver { |
+ public: |
+ explicit StateSaver(DFA* dfa, State* state); |
+ ~StateSaver(); |
+ |
+ // Recreates and returns a state equivalent to the |
+ // original state passed to the constructor. |
+ // Returns NULL if the cache has filled, but |
+ // since the DFA guarantees to have room in the cache |
+ // for a couple states, should never return NULL |
+ // if used right after ResetCache. |
+ State* Restore(); |
+ |
+ private: |
+ DFA* dfa_; // the DFA to use |
+ int* inst_; // saved info from State |
+ int ninst_; |
+ uint flag_; |
+ bool is_special_; // whether original state was special |
+ State* special_; // if is_special_, the original state |
+ |
+ DISALLOW_EVIL_CONSTRUCTORS(StateSaver); |
+}; |
+ |
+DFA::StateSaver::StateSaver(DFA* dfa, State* state) { |
+ dfa_ = dfa; |
+ if (state <= SpecialStateMax) { |
+ inst_ = NULL; |
+ ninst_ = 0; |
+ flag_ = 0; |
+ is_special_ = true; |
+ special_ = state; |
+ return; |
+ } |
+ is_special_ = false; |
+ special_ = NULL; |
+ flag_ = state->flag_; |
+ ninst_ = state->ninst_; |
+ inst_ = new int[ninst_]; |
+ memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); |
+} |
+ |
+DFA::StateSaver::~StateSaver() { |
+ if (!is_special_) |
+ delete[] inst_; |
+} |
+ |
+DFA::State* DFA::StateSaver::Restore() { |
+ if (is_special_) |
+ return special_; |
+ MutexLock l(&dfa_->mutex_); |
+ State* s = dfa_->CachedState(inst_, ninst_, flag_); |
+ if (s == NULL) |
+ LOG(DFATAL) << "StateSaver failed to restore state."; |
+ return s; |
+} |
+ |
+ |
+////////////////////////////////////////////////////////////////////// |
+// |
+// DFA execution. |
+// |
+// The basic search loop is easy: start in a state s and then for each |
+// byte c in the input, s = s->next[c]. |
+// |
+// This simple description omits a few efficiency-driven complications. |
+// |
+// First, the State graph is constructed incrementally: it is possible |
+// that s->next[c] is null, indicating that that state has not been |
+// fully explored. In this case, RunStateOnByte must be invoked to |
+// determine the next state, which is cached in s->next[c] to save |
+// future effort. An alternative reason for s->next[c] to be null is |
+// that the DFA has reached a so-called "dead state", in which any match |
+// is no longer possible. In this case RunStateOnByte will return NULL |
+// and the processing of the string can stop early. |
+// |
+// Second, a 256-element pointer array for s->next_ makes each State |
+// quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] |
+// maps from bytes to "byte classes" and then next_ only needs to have |
+// as many pointers as there are byte classes. A byte class is simply a |
+// range of bytes that the regexp never distinguishes between. |
+// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, |
+// 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit |
+// but in exchange we typically cut the size of a State (and thus our |
+// memory footprint) by about 5-10x. The comments still refer to |
+// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. |
+// |
+// Third, it is common for a DFA for an unanchored match to begin in a |
+// state in which only one particular byte value can take the DFA to a |
+// different state. That is, s->next[c] != s for only one c. In this |
+// situation, the DFA can do better than executing the simple loop. |
+// Instead, it can call memchr to search very quickly for the byte c. |
+// Whether the start state has this property is determined during a |
+// pre-compilation pass, and if so, the byte b is passed to the search |
+// loop as the "firstbyte" argument, along with a boolean "have_firstbyte". |
+// |
+// Fourth, the desired behavior is to search for the leftmost-best match |
+// (approximately, the same one that Perl would find), which is not |
+// necessarily the match ending earliest in the string. Each time a |
+// match is found, it must be noted, but the DFA must continue on in |
+// hope of finding a higher-priority match. In some cases, the caller only |
+// cares whether there is any match at all, not which one is found. |
+// The "want_earliest_match" flag causes the search to stop at the first |
+// match found. |
+// |
+// Fifth, one algorithm that uses the DFA needs it to run over the |
+// input string backward, beginning at the end and ending at the beginning. |
+// Passing false for the "run_forward" flag causes the DFA to run backward. |
+// |
+// The checks for these last three cases, which in a naive implementation |
+// would be performed once per input byte, slow the general loop enough |
+// to merit specialized versions of the search loop for each of the |
+// eight possible settings of the three booleans. Rather than write |
+// eight different functions, we write one general implementation and then |
+// inline it to create the specialized ones. |
+// |
+// Note that matches are delayed by one byte, to make it easier to |
+// accomodate match conditions depending on the next input byte (like $ and \b). |
+// When s->next[c]->IsMatch(), it means that there is a match ending just |
+// *before* byte c. |
+ |
+// The generic search loop. Searches text for a match, returning |
+// the pointer to the end of the chosen match, or NULL if no match. |
+// The bools are equal to the same-named variables in params, but |
+// making them function arguments lets the inliner specialize |
+// this function to each combination (see two paragraphs above). |
+inline bool DFA::InlinedSearchLoop(SearchParams* params, |
+ bool have_firstbyte, |
+ bool want_earliest_match, |
+ bool run_forward) { |
+ State* start = params->start; |
+ const uint8* bp = BytePtr(params->text.begin()); // start of text |
+ const uint8* p = bp; // text scanning point |
+ const uint8* ep = BytePtr(params->text.end()); // end of text |
+ const uint8* resetp = NULL; // p at last cache reset |
+ if (!run_forward) |
+ swap(p, ep); |
+ |
+ const uint8* bytemap = prog_->bytemap(); |
+ const uint8* lastmatch = NULL; // most recent matching position in text |
+ bool matched = false; |
+ State* s = start; |
+ |
+ if (s->IsMatch()) { |
+ matched = true; |
+ lastmatch = p; |
+ if (want_earliest_match) { |
+ params->ep = reinterpret_cast<const char*>(lastmatch); |
+ return true; |
+ } |
+ } |
+ |
+ while (p != ep) { |
+ if (DebugDFA) |
+ fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), |
+ DumpState(s).c_str()); |
+ if (have_firstbyte && s == start) { |
+ // In start state, only way out is to find firstbyte, |
+ // so use optimized assembly in memchr to skip ahead. |
+ // If firstbyte isn't found, we can skip to the end |
+ // of the string. |
+ if (run_forward) { |
+ if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { |
+ p = ep; |
+ break; |
+ } |
+ } else { |
+ if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { |
+ p = ep; |
+ break; |
+ } |
+ p++; |
+ } |
+ } |
+ |
+ int c; |
+ if (run_forward) |
+ c = *p++; |
+ else |
+ c = *--p; |
+ |
+ // Note that multiple threads might be consulting |
+ // s->next_[bytemap[c]] simultaneously. |
+ // RunStateOnByte takes care of the appropriate locking, |
+ // including a memory barrier so that the unlocked access |
+ // (sometimes known as "double-checked locking") is safe. |
+ // The alternative would be either one DFA per thread |
+ // or one mutex operation per input byte. |
+ // |
+ // ns == DeadState means the state is known to be dead |
+ // (no more matches are possible). |
+ // ns == NULL means the state has not yet been computed |
+ // (need to call RunStateOnByteUnlocked). |
+ // RunStateOnByte returns ns == NULL if it is out of memory. |
+ // ns == FullMatchState means the rest of the string matches. |
+ // |
+ // Okay to use bytemap[] not ByteMap() here, because |
+ // c is known to be an actual byte and not kByteEndText. |
+ |
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering |
+ State* ns = s->next_[bytemap[c]]; |
+ if (ns == NULL) { |
+ ns = RunStateOnByteUnlocked(s, c); |
+ if (ns == NULL) { |
+ // After we reset the cache, we hold cache_mutex exclusively, |
+ // so if resetp != NULL, it means we filled the DFA state |
+ // cache with this search alone (without any other threads). |
+ // Benchmarks show that doing a state computation on every |
+ // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the |
+ // same at about 2 MB/s. Unless we're processing an average |
+ // of 10 bytes per state computation, fail so that RE2 can |
+ // fall back to the NFA. |
+ if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && |
+ (p - resetp) < 10*state_cache_.size()) { |
+ params->failed = true; |
+ return false; |
+ } |
+ resetp = p; |
+ |
+ // Prepare to save start and s across the reset. |
+ StateSaver save_start(this, start); |
+ StateSaver save_s(this, s); |
+ |
+ // Discard all the States in the cache. |
+ ResetCache(params->cache_lock); |
+ |
+ // Restore start and s so we can continue. |
+ if ((start = save_start.Restore()) == NULL || |
+ (s = save_s.Restore()) == NULL) { |
+ // Restore already did LOG(DFATAL). |
+ params->failed = true; |
+ return false; |
+ } |
+ ns = RunStateOnByteUnlocked(s, c); |
+ if (ns == NULL) { |
+ LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; |
+ params->failed = true; |
+ return false; |
+ } |
+ } |
+ } |
+ if (ns <= SpecialStateMax) { |
+ if (ns == DeadState) { |
+ params->ep = reinterpret_cast<const char*>(lastmatch); |
+ return matched; |
+ } |
+ // FullMatchState |
+ params->ep = reinterpret_cast<const char*>(ep); |
+ return true; |
+ } |
+ s = ns; |
+ |
+ if (s->IsMatch()) { |
+ matched = true; |
+ // The DFA notices the match one byte late, |
+ // so adjust p before using it in the match. |
+ if (run_forward) |
+ lastmatch = p - 1; |
+ else |
+ lastmatch = p + 1; |
+ if (DebugDFA) |
+ fprintf(stderr, "match @%d! [%s]\n", |
+ static_cast<int>(lastmatch - bp), |
+ DumpState(s).c_str()); |
+ |
+ if (want_earliest_match) { |
+ params->ep = reinterpret_cast<const char*>(lastmatch); |
+ return true; |
+ } |
+ } |
+ } |
+ |
+ // Peek in state to see if a match is coming up. |
+ if (params->matches && kind_ == Prog::kManyMatch) { |
+ vector<int>* v = params->matches; |
+ v->clear(); |
+ if (s > SpecialStateMax) { |
+ for (int i = 0; i < s->ninst_; i++) { |
+ Prog::Inst* ip = prog_->inst(s->inst_[i]); |
+ if (ip->opcode() == kInstMatch) |
+ v->push_back(ip->match_id()); |
+ } |
+ } |
+ } |
+ |
+ |
+ // Process one more byte to see if it triggers a match. |
+ // (Remember, matches are delayed one byte.) |
+ int lastbyte; |
+ if (run_forward) { |
+ if (params->text.end() == params->context.end()) |
+ lastbyte = kByteEndText; |
+ else |
+ lastbyte = params->text.end()[0] & 0xFF; |
+ } else { |
+ if (params->text.begin() == params->context.begin()) |
+ lastbyte = kByteEndText; |
+ else |
+ lastbyte = params->text.begin()[-1] & 0xFF; |
+ } |
+ |
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering |
+ State* ns = s->next_[ByteMap(lastbyte)]; |
+ if (ns == NULL) { |
+ ns = RunStateOnByteUnlocked(s, lastbyte); |
+ if (ns == NULL) { |
+ StateSaver save_s(this, s); |
+ ResetCache(params->cache_lock); |
+ if ((s = save_s.Restore()) == NULL) { |
+ params->failed = true; |
+ return false; |
+ } |
+ ns = RunStateOnByteUnlocked(s, lastbyte); |
+ if (ns == NULL) { |
+ LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; |
+ params->failed = true; |
+ return false; |
+ } |
+ } |
+ } |
+ s = ns; |
+ if (DebugDFA) |
+ fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); |
+ if (s == FullMatchState) { |
+ params->ep = reinterpret_cast<const char*>(ep); |
+ return true; |
+ } |
+ if (s > SpecialStateMax && s->IsMatch()) { |
+ matched = true; |
+ lastmatch = p; |
+ if (DebugDFA) |
+ fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), |
+ DumpState(s).c_str()); |
+ } |
+ params->ep = reinterpret_cast<const char*>(lastmatch); |
+ return matched; |
+} |
+ |
+// Inline specializations of the general loop. |
+bool DFA::SearchFFF(SearchParams* params) { |
+ return InlinedSearchLoop(params, 0, 0, 0); |
+} |
+bool DFA::SearchFFT(SearchParams* params) { |
+ return InlinedSearchLoop(params, 0, 0, 1); |
+} |
+bool DFA::SearchFTF(SearchParams* params) { |
+ return InlinedSearchLoop(params, 0, 1, 0); |
+} |
+bool DFA::SearchFTT(SearchParams* params) { |
+ return InlinedSearchLoop(params, 0, 1, 1); |
+} |
+bool DFA::SearchTFF(SearchParams* params) { |
+ return InlinedSearchLoop(params, 1, 0, 0); |
+} |
+bool DFA::SearchTFT(SearchParams* params) { |
+ return InlinedSearchLoop(params, 1, 0, 1); |
+} |
+bool DFA::SearchTTF(SearchParams* params) { |
+ return InlinedSearchLoop(params, 1, 1, 0); |
+} |
+bool DFA::SearchTTT(SearchParams* params) { |
+ return InlinedSearchLoop(params, 1, 1, 1); |
+} |
+ |
+// For debugging, calls the general code directly. |
+bool DFA::SlowSearchLoop(SearchParams* params) { |
+ return InlinedSearchLoop(params, |
+ params->firstbyte >= 0, |
+ params->want_earliest_match, |
+ params->run_forward); |
+} |
+ |
+// For performance, calls the appropriate specialized version |
+// of InlinedSearchLoop. |
+bool DFA::FastSearchLoop(SearchParams* params) { |
+ // Because the methods are private, the Searches array |
+ // cannot be declared at top level. |
+ static bool (DFA::*Searches[])(SearchParams*) = { |
+ &DFA::SearchFFF, |
+ &DFA::SearchFFT, |
+ &DFA::SearchFTF, |
+ &DFA::SearchFTT, |
+ &DFA::SearchTFF, |
+ &DFA::SearchTFT, |
+ &DFA::SearchTTF, |
+ &DFA::SearchTTT, |
+ }; |
+ |
+ bool have_firstbyte = (params->firstbyte >= 0); |
+ int index = 4 * have_firstbyte + |
+ 2 * params->want_earliest_match + |
+ 1 * params->run_forward; |
+ return (this->*Searches[index])(params); |
+} |
+ |
+ |
+// The discussion of DFA execution above ignored the question of how |
+// to determine the initial state for the search loop. There are two |
+// factors that influence the choice of start state. |
+// |
+// The first factor is whether the search is anchored or not. |
+// The regexp program (Prog*) itself has |
+// two different entry points: one for anchored searches and one for |
+// unanchored searches. (The unanchored version starts with a leading ".*?" |
+// and then jumps to the anchored one.) |
+// |
+// The second factor is where text appears in the larger context, which |
+// determines which empty-string operators can be matched at the beginning |
+// of execution. If text is at the very beginning of context, \A and ^ match. |
+// Otherwise if text is at the beginning of a line, then ^ matches. |
+// Otherwise it matters whether the character before text is a word character |
+// or a non-word character. |
+// |
+// The two cases (unanchored vs not) and four cases (empty-string flags) |
+// combine to make the eight cases recorded in the DFA's begin_text_[2], |
+// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached |
+// StartInfos. The start state for each is filled in the first time it |
+// is used for an actual search. |
+ |
+// Examines text, context, and anchored to determine the right start |
+// state for the DFA search loop. Fills in params and returns true on success. |
+// Returns false on failure. |
+bool DFA::AnalyzeSearch(SearchParams* params) { |
+ const StringPiece& text = params->text; |
+ const StringPiece& context = params->context; |
+ |
+ // Sanity check: make sure that text lies within context. |
+ if (text.begin() < context.begin() || text.end() > context.end()) { |
+ LOG(DFATAL) << "Text is not inside context."; |
+ params->start = DeadState; |
+ return true; |
+ } |
+ |
+ // Determine correct search type. |
+ int start; |
+ uint flags; |
+ if (params->run_forward) { |
+ if (text.begin() == context.begin()) { |
+ start = kStartBeginText; |
+ flags = kEmptyBeginText|kEmptyBeginLine; |
+ } else if (text.begin()[-1] == '\n') { |
+ start = kStartBeginLine; |
+ flags = kEmptyBeginLine; |
+ } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { |
+ start = kStartAfterWordChar; |
+ flags = kFlagLastWord; |
+ } else { |
+ start = kStartAfterNonWordChar; |
+ flags = 0; |
+ } |
+ } else { |
+ if (text.end() == context.end()) { |
+ start = kStartBeginText; |
+ flags = kEmptyBeginText|kEmptyBeginLine; |
+ } else if (text.end()[0] == '\n') { |
+ start = kStartBeginLine; |
+ flags = kEmptyBeginLine; |
+ } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { |
+ start = kStartAfterWordChar; |
+ flags = kFlagLastWord; |
+ } else { |
+ start = kStartAfterNonWordChar; |
+ flags = 0; |
+ } |
+ } |
+ if (params->anchored || prog_->anchor_start()) |
+ start |= kStartAnchored; |
+ StartInfo* info = &start_[start]; |
+ |
+ // Try once without cache_lock for writing. |
+ // Try again after resetting the cache |
+ // (ResetCache will relock cache_lock for writing). |
+ if (!AnalyzeSearchHelper(params, info, flags)) { |
+ ResetCache(params->cache_lock); |
+ if (!AnalyzeSearchHelper(params, info, flags)) { |
+ LOG(DFATAL) << "Failed to analyze start state."; |
+ params->failed = true; |
+ return false; |
+ } |
+ } |
+ |
+ if (DebugDFA) |
+ fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", |
+ params->anchored, params->run_forward, flags, |
+ DumpState(info->start).c_str(), info->firstbyte); |
+ |
+ params->start = info->start; |
+ params->firstbyte = info->firstbyte; |
+ |
+ return true; |
+} |
+ |
+// Fills in info if needed. Returns true on success, false on failure. |
+bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, |
+ uint flags) { |
+ // Quick check; okay because of memory barriers below. |
+ if (info->firstbyte != kFbUnknown) |
+ return true; |
+ |
+ MutexLock l(&mutex_); |
+ if (info->firstbyte != kFbUnknown) |
+ return true; |
+ |
+ q0_->clear(); |
+ AddToQueue(q0_, |
+ params->anchored ? prog_->start() : prog_->start_unanchored(), |
+ flags); |
+ info->start = WorkqToCachedState(q0_, flags); |
+ if (info->start == NULL) |
+ return false; |
+ |
+ if (info->start == DeadState) { |
+ WriteMemoryBarrier(); // Synchronize with "quick check" above. |
+ info->firstbyte = kFbNone; |
+ return true; |
+ } |
+ |
+ if (info->start == FullMatchState) { |
+ WriteMemoryBarrier(); // Synchronize with "quick check" above. |
+ info->firstbyte = kFbNone; // will be ignored |
+ return true; |
+ } |
+ |
+ // Compute info->firstbyte by running state on all |
+ // possible byte values, looking for a single one that |
+ // leads to a different state. |
+ int firstbyte = kFbNone; |
+ for (int i = 0; i < 256; i++) { |
+ State* s = RunStateOnByte(info->start, i); |
+ if (s == NULL) { |
+ WriteMemoryBarrier(); // Synchronize with "quick check" above. |
+ info->firstbyte = firstbyte; |
+ return false; |
+ } |
+ if (s == info->start) |
+ continue; |
+ // Goes to new state... |
+ if (firstbyte == kFbNone) { |
+ firstbyte = i; // ... first one |
+ } else { |
+ firstbyte = kFbMany; // ... too many |
+ break; |
+ } |
+ } |
+ WriteMemoryBarrier(); // Synchronize with "quick check" above. |
+ info->firstbyte = firstbyte; |
+ return true; |
+} |
+ |
+// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. |
+bool DFA::Search(const StringPiece& text, |
+ const StringPiece& context, |
+ bool anchored, |
+ bool want_earliest_match, |
+ bool run_forward, |
+ bool* failed, |
+ const char** epp, |
+ vector<int>* matches) { |
+ *epp = NULL; |
+ if (!ok()) { |
+ *failed = true; |
+ return false; |
+ } |
+ *failed = false; |
+ |
+ if (DebugDFA) { |
+ fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); |
+ fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", |
+ text.as_string().c_str(), anchored, want_earliest_match, |
+ run_forward, kind_); |
+ } |
+ |
+ RWLocker l(&cache_mutex_); |
+ SearchParams params(text, context, &l); |
+ params.anchored = anchored; |
+ params.want_earliest_match = want_earliest_match; |
+ params.run_forward = run_forward; |
+ params.matches = matches; |
+ |
+ if (!AnalyzeSearch(¶ms)) { |
+ *failed = true; |
+ return false; |
+ } |
+ if (params.start == DeadState) |
+ return false; |
+ if (params.start == FullMatchState) { |
+ if (run_forward == want_earliest_match) |
+ *epp = text.begin(); |
+ else |
+ *epp = text.end(); |
+ return true; |
+ } |
+ if (DebugDFA) |
+ fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); |
+ bool ret = FastSearchLoop(¶ms); |
+ if (params.failed) { |
+ *failed = true; |
+ return false; |
+ } |
+ *epp = params.ep; |
+ return ret; |
+} |
+ |
+// Deletes dfa. |
+// |
+// This is a separate function so that |
+// prog.h can be used without moving the definition of |
+// class DFA out of this file. If you set |
+// prog->dfa_ = dfa; |
+// then you also have to set |
+// prog->delete_dfa_ = DeleteDFA; |
+// so that ~Prog can delete the dfa. |
+static void DeleteDFA(DFA* dfa) { |
+ delete dfa; |
+} |
+ |
+DFA* Prog::GetDFA(MatchKind kind) { |
+ DFA*volatile* pdfa; |
+ if (kind == kFirstMatch || kind == kManyMatch) { |
+ pdfa = &dfa_first_; |
+ } else { |
+ kind = kLongestMatch; |
+ pdfa = &dfa_longest_; |
+ } |
+ |
+ // Quick check; okay because of memory barrier below. |
+ DFA *dfa = *pdfa; |
+ if (dfa != NULL) { |
+ ANNOTATE_HAPPENS_AFTER(dfa); |
+ return dfa; |
+ } |
+ |
+ MutexLock l(&dfa_mutex_); |
+ dfa = *pdfa; |
+ if (dfa != NULL) |
+ return dfa; |
+ |
+ // For a forward DFA, half the memory goes to each DFA. |
+ // For a reverse DFA, all the memory goes to the |
+ // "longest match" DFA, because RE2 never does reverse |
+ // "first match" searches. |
+ int64 m = dfa_mem_/2; |
+ if (reversed_) { |
+ if (kind == kLongestMatch || kind == kManyMatch) |
+ m = dfa_mem_; |
+ else |
+ m = 0; |
+ } |
+ dfa = new DFA(this, kind, m); |
+ delete_dfa_ = DeleteDFA; |
+ |
+ // Synchronize with "quick check" above. |
+ ANNOTATE_HAPPENS_BEFORE(dfa); |
+ WriteMemoryBarrier(); |
+ *pdfa = dfa; |
+ |
+ return dfa; |
+} |
+ |
+ |
+// Executes the regexp program to search in text, |
+// which itself is inside the larger context. (As a convenience, |
+// passing a NULL context is equivalent to passing text.) |
+// Returns true if a match is found, false if not. |
+// If a match is found, fills in match0->end() to point at the end of the match |
+// and sets match0->begin() to text.begin(), since the DFA can't track |
+// where the match actually began. |
+// |
+// This is the only external interface (class DFA only exists in this file). |
+// |
+bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, |
+ Anchor anchor, MatchKind kind, |
+ StringPiece* match0, bool* failed, vector<int>* matches) { |
+ *failed = false; |
+ |
+ StringPiece context = const_context; |
+ if (context.begin() == NULL) |
+ context = text; |
+ bool carat = anchor_start(); |
+ bool dollar = anchor_end(); |
+ if (reversed_) { |
+ bool t = carat; |
+ carat = dollar; |
+ dollar = t; |
+ } |
+ if (carat && context.begin() != text.begin()) |
+ return false; |
+ if (dollar && context.end() != text.end()) |
+ return false; |
+ |
+ // Handle full match by running an anchored longest match |
+ // and then checking if it covers all of text. |
+ bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; |
+ bool endmatch = false; |
+ if (kind == kManyMatch) { |
+ endmatch = true; |
+ } else if (kind == kFullMatch || anchor_end()) { |
+ endmatch = true; |
+ kind = kLongestMatch; |
+ } |
+ |
+ // If the caller doesn't care where the match is (just whether one exists), |
+ // then we can stop at the very first match we find, the so-called |
+ // "shortest match". |
+ bool want_shortest_match = false; |
+ if (match0 == NULL && !endmatch) { |
+ want_shortest_match = true; |
+ kind = kLongestMatch; |
+ } |
+ |
+ DFA* dfa = GetDFA(kind); |
+ const char* ep; |
+ bool matched = dfa->Search(text, context, anchored, |
+ want_shortest_match, !reversed_, |
+ failed, &ep, matches); |
+ if (*failed) |
+ return false; |
+ if (!matched) |
+ return false; |
+ if (endmatch && ep != (reversed_ ? text.begin() : text.end())) |
+ return false; |
+ |
+ // If caller cares, record the boundary of the match. |
+ // We only know where it ends, so use the boundary of text |
+ // as the beginning. |
+ if (match0) { |
+ if (reversed_) |
+ *match0 = StringPiece(ep, text.end() - ep); |
+ else |
+ *match0 = StringPiece(text.begin(), ep - text.begin()); |
+ } |
+ return true; |
+} |
+ |
+// Build out all states in DFA. Returns number of states. |
+int DFA::BuildAllStates() { |
+ if (!ok()) |
+ return 0; |
+ |
+ // Pick out start state for unanchored search |
+ // at beginning of text. |
+ RWLocker l(&cache_mutex_); |
+ SearchParams params(NULL, NULL, &l); |
+ params.anchored = false; |
+ if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) |
+ return 0; |
+ |
+ // Add start state to work queue. |
+ StateSet queued; |
+ vector<State*> q; |
+ queued.insert(params.start); |
+ q.push_back(params.start); |
+ |
+ // Flood to expand every state. |
+ for (int i = 0; i < q.size(); i++) { |
+ State* s = q[i]; |
+ for (int c = 0; c < 257; c++) { |
+ State* ns = RunStateOnByteUnlocked(s, c); |
+ if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { |
+ queued.insert(ns); |
+ q.push_back(ns); |
+ } |
+ } |
+ } |
+ |
+ return q.size(); |
+} |
+ |
+// Build out all states in DFA for kind. Returns number of states. |
+int Prog::BuildEntireDFA(MatchKind kind) { |
+ //LOG(ERROR) << "BuildEntireDFA is only for testing."; |
+ return GetDFA(kind)->BuildAllStates(); |
+} |
+ |
+// Computes min and max for matching string. |
+// Won't return strings bigger than maxlen. |
+bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { |
+ if (!ok()) |
+ return false; |
+ |
+ // NOTE: if future users of PossibleMatchRange want more precision when |
+ // presented with infinitely repeated elements, consider making this a |
+ // parameter to PossibleMatchRange. |
+ static int kMaxEltRepetitions = 0; |
+ |
+ // Keep track of the number of times we've visited states previously. We only |
+ // revisit a given state if it's part of a repeated group, so if the value |
+ // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set |
+ // |*max| to |PrefixSuccessor(*max)|. |
+ // |
+ // Also note that previously_visited_states[UnseenStatePtr] will, in the STL |
+ // tradition, implicitly insert a '0' value at first use. We take advantage |
+ // of that property below. |
+ map<State*, int> previously_visited_states; |
+ |
+ // Pick out start state for anchored search at beginning of text. |
+ RWLocker l(&cache_mutex_); |
+ SearchParams params(NULL, NULL, &l); |
+ params.anchored = true; |
+ if (!AnalyzeSearch(¶ms)) |
+ return false; |
+ if (params.start == DeadState) { // No matching strings |
+ *min = ""; |
+ *max = ""; |
+ return true; |
+ } |
+ if (params.start == FullMatchState) // Every string matches: no max |
+ return false; |
+ |
+ // The DFA is essentially a big graph rooted at params.start, |
+ // and paths in the graph correspond to accepted strings. |
+ // Each node in the graph has potentially 256+1 arrows |
+ // coming out, one for each byte plus the magic end of |
+ // text character kByteEndText. |
+ |
+ // To find the smallest possible prefix of an accepted |
+ // string, we just walk the graph preferring to follow |
+ // arrows with the lowest bytes possible. To find the |
+ // largest possible prefix, we follow the largest bytes |
+ // possible. |
+ |
+ // The test for whether there is an arrow from s on byte j is |
+ // ns = RunStateOnByteUnlocked(s, j); |
+ // if (ns == NULL) |
+ // return false; |
+ // if (ns != DeadState && ns->ninst > 0) |
+ // The RunStateOnByteUnlocked call asks the DFA to build out the graph. |
+ // It returns NULL only if the DFA has run out of memory, |
+ // in which case we can't be sure of anything. |
+ // The second check sees whether there was graph built |
+ // and whether it is interesting graph. Nodes might have |
+ // ns->ninst == 0 if they exist only to represent the fact |
+ // that a match was found on the previous byte. |
+ |
+ // Build minimum prefix. |
+ State* s = params.start; |
+ min->clear(); |
+ for (int i = 0; i < maxlen; i++) { |
+ if (previously_visited_states[s] > kMaxEltRepetitions) { |
+ VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions |
+ << " for state s=" << s << " and min=" << CEscape(*min); |
+ break; |
+ } |
+ previously_visited_states[s]++; |
+ |
+ // Stop if min is a match. |
+ State* ns = RunStateOnByteUnlocked(s, kByteEndText); |
+ if (ns == NULL) // DFA out of memory |
+ return false; |
+ if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) |
+ break; |
+ |
+ // Try to extend the string with low bytes. |
+ bool extended = false; |
+ for (int j = 0; j < 256; j++) { |
+ ns = RunStateOnByteUnlocked(s, j); |
+ if (ns == NULL) // DFA out of memory |
+ return false; |
+ if (ns == FullMatchState || |
+ (ns > SpecialStateMax && ns->ninst_ > 0)) { |
+ extended = true; |
+ min->append(1, j); |
+ s = ns; |
+ break; |
+ } |
+ } |
+ if (!extended) |
+ break; |
+ } |
+ |
+ // Build maximum prefix. |
+ previously_visited_states.clear(); |
+ s = params.start; |
+ max->clear(); |
+ for (int i = 0; i < maxlen; i++) { |
+ if (previously_visited_states[s] > kMaxEltRepetitions) { |
+ VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions |
+ << " for state s=" << s << " and max=" << CEscape(*max); |
+ break; |
+ } |
+ previously_visited_states[s] += 1; |
+ |
+ // Try to extend the string with high bytes. |
+ bool extended = false; |
+ for (int j = 255; j >= 0; j--) { |
+ State* ns = RunStateOnByteUnlocked(s, j); |
+ if (ns == NULL) |
+ return false; |
+ if (ns == FullMatchState || |
+ (ns > SpecialStateMax && ns->ninst_ > 0)) { |
+ extended = true; |
+ max->append(1, j); |
+ s = ns; |
+ break; |
+ } |
+ } |
+ if (!extended) { |
+ // Done, no need for PrefixSuccessor. |
+ return true; |
+ } |
+ } |
+ |
+ // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b |
+ *max = PrefixSuccessor(*max); |
+ |
+ // If there are no bytes left, we have no way to say "there is no maximum |
+ // string". We could make the interface more complicated and be able to |
+ // return "there is no maximum but here is a minimum", but that seems like |
+ // overkill -- the most common no-max case is all possible strings, so not |
+ // telling the caller that the empty string is the minimum match isn't a |
+ // great loss. |
+ if (max->empty()) |
+ return false; |
+ |
+ return true; |
+} |
+ |
+// PossibleMatchRange for a Prog. |
+bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { |
+ DFA* dfa = NULL; |
+ { |
+ MutexLock l(&dfa_mutex_); |
+ // Have to use dfa_longest_ to get all strings for full matches. |
+ // For example, (a|aa) never matches aa in first-match mode. |
+ if (dfa_longest_ == NULL) { |
+ dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); |
+ delete_dfa_ = DeleteDFA; |
+ } |
+ dfa = dfa_longest_; |
+ } |
+ return dfa->PossibleMatchRange(min, max, maxlen); |
+} |
+ |
+} // namespace re2 |