Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(411)

Unified Diff: third_party/re2/re2/dfa.cc

Issue 10575037: Include RE2 library (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Less intrusive fix for Android Created 8 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/re2/re2/compile.cc ('k') | third_party/re2/re2/filtered_re2.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/re2/re2/dfa.cc
diff --git a/third_party/re2/re2/dfa.cc b/third_party/re2/re2/dfa.cc
new file mode 100644
index 0000000000000000000000000000000000000000..344ef416653697ac98c002a142c1e552da9902ba
--- /dev/null
+++ b/third_party/re2/re2/dfa.cc
@@ -0,0 +1,2088 @@
+// Copyright 2008 The RE2 Authors. All Rights Reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// A DFA (deterministic finite automaton)-based regular expression search.
+//
+// The DFA search has two main parts: the construction of the automaton,
+// which is represented by a graph of State structures, and the execution
+// of the automaton over a given input string.
+//
+// The basic idea is that the State graph is constructed so that the
+// execution can simply start with a state s, and then for each byte c in
+// the input string, execute "s = s->next[c]", checking at each point whether
+// the current s represents a matching state.
+//
+// The simple explanation just given does convey the essence of this code,
+// but it omits the details of how the State graph gets constructed as well
+// as some performance-driven optimizations to the execution of the automaton.
+// All these details are explained in the comments for the code following
+// the definition of class DFA.
+//
+// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
+
+#include "re2/prog.h"
+#include "re2/stringpiece.h"
+#include "util/atomicops.h"
+#include "util/flags.h"
+#include "util/sparse_set.h"
+
+#define NO_THREAD_SAFETY_ANALYSIS
+
+DEFINE_bool(re2_dfa_bail_when_slow, true,
+ "Whether the RE2 DFA should bail out early "
+ "if the NFA would be faster (for testing).");
+
+namespace re2 {
+
+#if !defined(__linux__) /* only Linux seems to have memrchr */
+static void* memrchr(const void* s, int c, size_t n) {
+ const unsigned char* p = (const unsigned char*)s;
+ for (p += n; n > 0; n--)
+ if (*--p == c)
+ return (void*)p;
+
+ return NULL;
+}
+#endif
+
+// Changing this to true compiles in prints that trace execution of the DFA.
+// Generates a lot of output -- only useful for debugging.
+static const bool DebugDFA = false;
+
+// A DFA implementation of a regular expression program.
+// Since this is entirely a forward declaration mandated by C++,
+// some of the comments here are better understood after reading
+// the comments in the sections that follow the DFA definition.
+class DFA {
+ public:
+ DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
+ ~DFA();
+ bool ok() const { return !init_failed_; }
+ Prog::MatchKind kind() { return kind_; }
+
+ // Searches for the regular expression in text, which is considered
+ // as a subsection of context for the purposes of interpreting flags
+ // like ^ and $ and \A and \z.
+ // Returns whether a match was found.
+ // If a match is found, sets *ep to the end point of the best match in text.
+ // If "anchored", the match must begin at the start of text.
+ // If "want_earliest_match", the match that ends first is used, not
+ // necessarily the best one.
+ // If "run_forward" is true, the DFA runs from text.begin() to text.end().
+ // If it is false, the DFA runs from text.end() to text.begin(),
+ // returning the leftmost end of the match instead of the rightmost one.
+ // If the DFA cannot complete the search (for example, if it is out of
+ // memory), it sets *failed and returns false.
+ bool Search(const StringPiece& text, const StringPiece& context,
+ bool anchored, bool want_earliest_match, bool run_forward,
+ bool* failed, const char** ep, vector<int>* matches);
+
+ // Builds out all states for the entire DFA. FOR TESTING ONLY
+ // Returns number of states.
+ int BuildAllStates();
+
+ // Computes min and max for matching strings. Won't return strings
+ // bigger than maxlen.
+ bool PossibleMatchRange(string* min, string* max, int maxlen);
+
+ // These data structures are logically private, but C++ makes it too
+ // difficult to mark them as such.
+ class Workq;
+ class RWLocker;
+ class StateSaver;
+
+ // A single DFA state. The DFA is represented as a graph of these
+ // States, linked by the next_ pointers. If in state s and reading
+ // byte c, the next state should be s->next_[c].
+ struct State {
+ inline bool IsMatch() const { return flag_ & kFlagMatch; }
+ void SaveMatch(vector<int>* v);
+
+ int* inst_; // Instruction pointers in the state.
+ int ninst_; // # of inst_ pointers.
+ uint flag_; // Empty string bitfield flags in effect on the way
+ // into this state, along with kFlagMatch if this
+ // is a matching state.
+ State** next_; // Outgoing arrows from State,
+ // one per input byte class
+ };
+
+ enum {
+ kByteEndText = 256, // imaginary byte at end of text
+
+ kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags
+ kFlagMatch = 0x1000, // State.flag_: this is a matching state
+ kFlagLastWord = 0x2000, // State.flag_: last byte was a word char
+ kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left
+ };
+
+ // STL function structures for use with unordered_set.
+ struct StateEqual {
+ bool operator()(const State* a, const State* b) const {
+ if (a == b)
+ return true;
+ if (a == NULL || b == NULL)
+ return false;
+ if (a->ninst_ != b->ninst_)
+ return false;
+ if (a->flag_ != b->flag_)
+ return false;
+ for (int i = 0; i < a->ninst_; i++)
+ if (a->inst_[i] != b->inst_[i])
+ return false;
+ return true; // they're equal
+ }
+ };
+ struct StateHash {
+ size_t operator()(const State* a) const {
+ if (a == NULL)
+ return 0;
+ const char* s = reinterpret_cast<const char*>(a->inst_);
+ int len = a->ninst_ * sizeof a->inst_[0];
+ if (sizeof(size_t) == sizeof(uint32))
+ return Hash32StringWithSeed(s, len, a->flag_);
+ else
+ return Hash64StringWithSeed(s, len, a->flag_);
+ }
+ };
+
+ typedef unordered_set<State*, StateHash, StateEqual> StateSet;
+
+
+ private:
+ // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.)
+ enum {
+ kFbUnknown = -1, // No analysis has been performed.
+ kFbMany = -2, // Many bytes will lead out of this state.
+ kFbNone = -3, // No bytes lead out of this state.
+ };
+
+ enum {
+ // Indices into start_ for unanchored searches.
+ // Add kStartAnchored for anchored searches.
+ kStartBeginText = 0, // text at beginning of context
+ kStartBeginLine = 2, // text at beginning of line
+ kStartAfterWordChar = 4, // text follows a word character
+ kStartAfterNonWordChar = 6, // text follows non-word character
+ kMaxStart = 8,
+
+ kStartAnchored = 1,
+ };
+
+ // Resets the DFA State cache, flushing all saved State* information.
+ // Releases and reacquires cache_mutex_ via cache_lock, so any
+ // State* existing before the call are not valid after the call.
+ // Use a StateSaver to preserve important states across the call.
+ // cache_mutex_.r <= L < mutex_
+ // After: cache_mutex_.w <= L < mutex_
+ void ResetCache(RWLocker* cache_lock);
+
+ // Looks up and returns the State corresponding to a Workq.
+ // L >= mutex_
+ State* WorkqToCachedState(Workq* q, uint flag);
+
+ // Looks up and returns a State matching the inst, ninst, and flag.
+ // L >= mutex_
+ State* CachedState(int* inst, int ninst, uint flag);
+
+ // Clear the cache entirely.
+ // Must hold cache_mutex_.w or be in destructor.
+ void ClearCache();
+
+ // Converts a State into a Workq: the opposite of WorkqToCachedState.
+ // L >= mutex_
+ static void StateToWorkq(State* s, Workq* q);
+
+ // Runs a State on a given byte, returning the next state.
+ State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_
+ State* RunStateOnByte(State*, int); // L >= mutex_
+
+ // Runs a Workq on a given byte followed by a set of empty-string flags,
+ // producing a new Workq in nq. If a match instruction is encountered,
+ // sets *ismatch to true.
+ // L >= mutex_
+ void RunWorkqOnByte(Workq* q, Workq* nq,
+ int c, uint flag, bool* ismatch,
+ Prog::MatchKind kind,
+ int new_byte_loop);
+
+ // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
+ // L >= mutex_
+ void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
+
+ // Adds the instruction id to the Workq, following empty arrows
+ // according to flag.
+ // L >= mutex_
+ void AddToQueue(Workq* q, int id, uint flag);
+
+ // For debugging, returns a text representation of State.
+ static string DumpState(State* state);
+
+ // For debugging, returns a text representation of a Workq.
+ static string DumpWorkq(Workq* q);
+
+ // Search parameters
+ struct SearchParams {
+ SearchParams(const StringPiece& text, const StringPiece& context,
+ RWLocker* cache_lock)
+ : text(text), context(context),
+ anchored(false),
+ want_earliest_match(false),
+ run_forward(false),
+ start(NULL),
+ firstbyte(kFbUnknown),
+ cache_lock(cache_lock),
+ failed(false),
+ ep(NULL),
+ matches(NULL) { }
+
+ StringPiece text;
+ StringPiece context;
+ bool anchored;
+ bool want_earliest_match;
+ bool run_forward;
+ State* start;
+ int firstbyte;
+ RWLocker *cache_lock;
+ bool failed; // "out" parameter: whether search gave up
+ const char* ep; // "out" parameter: end pointer for match
+ vector<int>* matches;
+
+ private:
+ DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
+ };
+
+ // Before each search, the parameters to Search are analyzed by
+ // AnalyzeSearch to determine the state in which to start and the
+ // "firstbyte" for that state, if any.
+ struct StartInfo {
+ StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
+ State* start;
+ volatile int firstbyte;
+ };
+
+ // Fills in params->start and params->firstbyte using
+ // the other search parameters. Returns true on success,
+ // false on failure.
+ // cache_mutex_.r <= L < mutex_
+ bool AnalyzeSearch(SearchParams* params);
+ bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
+
+ // The generic search loop, inlined to create specialized versions.
+ // cache_mutex_.r <= L < mutex_
+ // Might unlock and relock cache_mutex_ via params->cache_lock.
+ inline bool InlinedSearchLoop(SearchParams* params,
+ bool have_firstbyte,
+ bool want_earliest_match,
+ bool run_forward);
+
+ // The specialized versions of InlinedSearchLoop. The three letters
+ // at the ends of the name denote the true/false values used as the
+ // last three parameters of InlinedSearchLoop.
+ // cache_mutex_.r <= L < mutex_
+ // Might unlock and relock cache_mutex_ via params->cache_lock.
+ bool SearchFFF(SearchParams* params);
+ bool SearchFFT(SearchParams* params);
+ bool SearchFTF(SearchParams* params);
+ bool SearchFTT(SearchParams* params);
+ bool SearchTFF(SearchParams* params);
+ bool SearchTFT(SearchParams* params);
+ bool SearchTTF(SearchParams* params);
+ bool SearchTTT(SearchParams* params);
+
+ // The main search loop: calls an appropriate specialized version of
+ // InlinedSearchLoop.
+ // cache_mutex_.r <= L < mutex_
+ // Might unlock and relock cache_mutex_ via params->cache_lock.
+ bool FastSearchLoop(SearchParams* params);
+
+ // For debugging, a slow search loop that calls InlinedSearchLoop
+ // directly -- because the booleans passed are not constants, the
+ // loop is not specialized like the SearchFFF etc. versions, so it
+ // runs much more slowly. Useful only for debugging.
+ // cache_mutex_.r <= L < mutex_
+ // Might unlock and relock cache_mutex_ via params->cache_lock.
+ bool SlowSearchLoop(SearchParams* params);
+
+ // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
+ int ByteMap(int c) {
+ if (c == kByteEndText)
+ return prog_->bytemap_range();
+ return prog_->bytemap()[c];
+ }
+
+ // Constant after initialization.
+ Prog* prog_; // The regular expression program to run.
+ Prog::MatchKind kind_; // The kind of DFA.
+ int start_unanchored_; // start of unanchored program
+ bool init_failed_; // initialization failed (out of memory)
+
+ Mutex mutex_; // mutex_ >= cache_mutex_.r
+
+ // Scratch areas, protected by mutex_.
+ Workq* q0_; // Two pre-allocated work queues.
+ Workq* q1_;
+ int* astack_; // Pre-allocated stack for AddToQueue
+ int nastack_;
+
+ // State* cache. Many threads use and add to the cache simultaneously,
+ // holding cache_mutex_ for reading and mutex_ (above) when adding.
+ // If the cache fills and needs to be discarded, the discarding is done
+ // while holding cache_mutex_ for writing, to avoid interrupting other
+ // readers. Any State* pointers are only valid while cache_mutex_
+ // is held.
+ Mutex cache_mutex_;
+ int64 mem_budget_; // Total memory budget for all States.
+ int64 state_budget_; // Amount of memory remaining for new States.
+ StateSet state_cache_; // All States computed so far.
+ StartInfo start_[kMaxStart];
+ bool cache_warned_; // have printed to LOG(INFO) about the cache
+};
+
+// Shorthand for casting to uint8*.
+static inline const uint8* BytePtr(const void* v) {
+ return reinterpret_cast<const uint8*>(v);
+}
+
+// Work queues
+
+// Marks separate thread groups of different priority
+// in the work queue when in leftmost-longest matching mode.
+#define Mark (-1)
+
+// Internally, the DFA uses a sparse array of
+// program instruction pointers as a work queue.
+// In leftmost longest mode, marks separate sections
+// of workq that started executing at different
+// locations in the string (earlier locations first).
+class DFA::Workq : public SparseSet {
+ public:
+ // Constructor: n is number of normal slots, maxmark number of mark slots.
+ Workq(int n, int maxmark) :
+ SparseSet(n+maxmark),
+ n_(n),
+ maxmark_(maxmark),
+ nextmark_(n),
+ last_was_mark_(true) {
+ }
+
+ bool is_mark(int i) { return i >= n_; }
+
+ int maxmark() { return maxmark_; }
+
+ void clear() {
+ SparseSet::clear();
+ nextmark_ = n_;
+ }
+
+ void mark() {
+ if (last_was_mark_)
+ return;
+ last_was_mark_ = false;
+ SparseSet::insert_new(nextmark_++);
+ }
+
+ int size() {
+ return n_ + maxmark_;
+ }
+
+ void insert(int id) {
+ if (contains(id))
+ return;
+ insert_new(id);
+ }
+
+ void insert_new(int id) {
+ last_was_mark_ = false;
+ SparseSet::insert_new(id);
+ }
+
+ private:
+ int n_; // size excluding marks
+ int maxmark_; // maximum number of marks
+ int nextmark_; // id of next mark
+ bool last_was_mark_; // last inserted was mark
+ DISALLOW_EVIL_CONSTRUCTORS(Workq);
+};
+
+DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
+ : prog_(prog),
+ kind_(kind),
+ init_failed_(false),
+ q0_(NULL),
+ q1_(NULL),
+ astack_(NULL),
+ mem_budget_(max_mem),
+ cache_warned_(false) {
+ if (DebugDFA)
+ fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
+ int nmark = 0;
+ start_unanchored_ = 0;
+ if (kind_ == Prog::kLongestMatch) {
+ nmark = prog->size();
+ start_unanchored_ = prog->start_unanchored();
+ }
+ nastack_ = 2 * prog->size() + nmark;
+
+ // Account for space needed for DFA, q0, q1, astack.
+ mem_budget_ -= sizeof(DFA);
+ mem_budget_ -= (prog_->size() + nmark) *
+ (sizeof(int)+sizeof(int)) * 2; // q0, q1
+ mem_budget_ -= nastack_ * sizeof(int); // astack
+ if (mem_budget_ < 0) {
+ LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
+ prog_->size(), max_mem);
+ init_failed_ = true;
+ return;
+ }
+
+ state_budget_ = mem_budget_;
+
+ // Make sure there is a reasonable amount of working room left.
+ // At minimum, the search requires room for two states in order
+ // to limp along, restarting frequently. We'll get better performance
+ // if there is room for a larger number of states, say 20.
+ int one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
+ (prog_->bytemap_range()+1)*sizeof(State*);
+ if (state_budget_ < 20*one_state) {
+ LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
+ prog_->size(), max_mem);
+ init_failed_ = true;
+ return;
+ }
+
+ q0_ = new Workq(prog->size(), nmark);
+ q1_ = new Workq(prog->size(), nmark);
+ astack_ = new int[nastack_];
+}
+
+DFA::~DFA() {
+ delete q0_;
+ delete q1_;
+ delete[] astack_;
+ ClearCache();
+}
+
+// In the DFA state graph, s->next[c] == NULL means that the
+// state has not yet been computed and needs to be. We need
+// a different special value to signal that s->next[c] is a
+// state that can never lead to a match (and thus the search
+// can be called off). Hence DeadState.
+#define DeadState reinterpret_cast<State*>(1)
+
+// Signals that the rest of the string matches no matter what it is.
+#define FullMatchState reinterpret_cast<State*>(2)
+
+#define SpecialStateMax FullMatchState
+
+// Debugging printouts
+
+// For debugging, returns a string representation of the work queue.
+string DFA::DumpWorkq(Workq* q) {
+ string s;
+ const char* sep = "";
+ for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
+ if (q->is_mark(*it)) {
+ StringAppendF(&s, "|");
+ sep = "";
+ } else {
+ StringAppendF(&s, "%s%d", sep, *it);
+ sep = ",";
+ }
+ }
+ return s;
+}
+
+// For debugging, returns a string representation of the state.
+string DFA::DumpState(State* state) {
+ if (state == NULL)
+ return "_";
+ if (state == DeadState)
+ return "X";
+ if (state == FullMatchState)
+ return "*";
+ string s;
+ const char* sep = "";
+ StringAppendF(&s, "(%p)", state);
+ for (int i = 0; i < state->ninst_; i++) {
+ if (state->inst_[i] == Mark) {
+ StringAppendF(&s, "|");
+ sep = "";
+ } else {
+ StringAppendF(&s, "%s%d", sep, state->inst_[i]);
+ sep = ",";
+ }
+ }
+ StringAppendF(&s, " flag=%#x", state->flag_);
+ return s;
+}
+
+//////////////////////////////////////////////////////////////////////
+//
+// DFA state graph construction.
+//
+// The DFA state graph is a heavily-linked collection of State* structures.
+// The state_cache_ is a set of all the State structures ever allocated,
+// so that if the same state is reached by two different paths,
+// the same State structure can be used. This reduces allocation
+// requirements and also avoids duplication of effort across the two
+// identical states.
+//
+// A State is defined by an ordered list of instruction ids and a flag word.
+//
+// The choice of an ordered list of instructions differs from a typical
+// textbook DFA implementation, which would use an unordered set.
+// Textbook descriptions, however, only care about whether
+// the DFA matches, not where it matches in the text. To decide where the
+// DFA matches, we need to mimic the behavior of the dominant backtracking
+// implementations like PCRE, which try one possible regular expression
+// execution, then another, then another, stopping when one of them succeeds.
+// The DFA execution tries these many executions in parallel, representing
+// each by an instruction id. These pointers are ordered in the State.inst_
+// list in the same order that the executions would happen in a backtracking
+// search: if a match is found during execution of inst_[2], inst_[i] for i>=3
+// can be discarded.
+//
+// Textbooks also typically do not consider context-aware empty string operators
+// like ^ or $. These are handled by the flag word, which specifies the set
+// of empty-string operators that should be matched when executing at the
+// current text position. These flag bits are defined in prog.h.
+// The flag word also contains two DFA-specific bits: kFlagMatch if the state
+// is a matching state (one that reached a kInstMatch in the program)
+// and kFlagLastWord if the last processed byte was a word character, for the
+// implementation of \B and \b.
+//
+// The flag word also contains, shifted up 16 bits, the bits looked for by
+// any kInstEmptyWidth instructions in the state. These provide a useful
+// summary indicating when new flags might be useful.
+//
+// The permanent representation of a State's instruction ids is just an array,
+// but while a state is being analyzed, these instruction ids are represented
+// as a Workq, which is an array that allows iteration in insertion order.
+
+// NOTE(rsc): The choice of State construction determines whether the DFA
+// mimics backtracking implementations (so-called leftmost first matching) or
+// traditional DFA implementations (so-called leftmost longest matching as
+// prescribed by POSIX). This implementation chooses to mimic the
+// backtracking implementations, because we want to replace PCRE. To get
+// POSIX behavior, the states would need to be considered not as a simple
+// ordered list of instruction ids, but as a list of unordered sets of instruction
+// ids. A match by a state in one set would inhibit the running of sets
+// farther down the list but not other instruction ids in the same set. Each
+// set would correspond to matches beginning at a given point in the string.
+// This is implemented by separating different sets with Mark pointers.
+
+// Looks in the State cache for a State matching q, flag.
+// If one is found, returns it. If one is not found, allocates one,
+// inserts it in the cache, and returns it.
+DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
+ if (DEBUG_MODE)
+ mutex_.AssertHeld();
+
+ // Construct array of instruction ids for the new state.
+ // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
+ // those are the only operators with any effect in
+ // RunWorkqOnEmptyString or RunWorkqOnByte.
+ int* inst = new int[q->size()];
+ int n = 0;
+ uint needflags = 0; // flags needed by kInstEmptyWidth instructions
+ bool sawmatch = false; // whether queue contains guaranteed kInstMatch
+ bool sawmark = false; // whether queue contains a Mark
+ if (DebugDFA)
+ fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
+ for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
+ int id = *it;
+ if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
+ break;
+ if (q->is_mark(id)) {
+ if (n > 0 && inst[n-1] != Mark) {
+ sawmark = true;
+ inst[n++] = Mark;
+ }
+ continue;
+ }
+ Prog::Inst* ip = prog_->inst(id);
+ switch (ip->opcode()) {
+ case kInstAltMatch:
+ // This state will continue to a match no matter what
+ // the rest of the input is. If it is the highest priority match
+ // being considered, return the special FullMatchState
+ // to indicate that it's all matches from here out.
+ if (kind_ != Prog::kManyMatch &&
+ (kind_ != Prog::kFirstMatch ||
+ (it == q->begin() && ip->greedy(prog_))) &&
+ (kind_ != Prog::kLongestMatch || !sawmark) &&
+ (flag & kFlagMatch)) {
+ delete[] inst;
+ if (DebugDFA)
+ fprintf(stderr, " -> FullMatchState\n");
+ return FullMatchState;
+ }
+ // Fall through.
+ case kInstByteRange: // These are useful.
+ case kInstEmptyWidth:
+ case kInstMatch:
+ case kInstAlt: // Not useful, but necessary [*]
+ inst[n++] = *it;
+ if (ip->opcode() == kInstEmptyWidth)
+ needflags |= ip->empty();
+ if (ip->opcode() == kInstMatch && !prog_->anchor_end())
+ sawmatch = true;
+ break;
+
+ default: // The rest are not.
+ break;
+ }
+
+ // [*] kInstAlt would seem useless to record in a state, since
+ // we've already followed both its arrows and saved all the
+ // interesting states we can reach from there. The problem
+ // is that one of the empty-width instructions might lead
+ // back to the same kInstAlt (if an empty-width operator is starred),
+ // producing a different evaluation order depending on whether
+ // we keep the kInstAlt to begin with. Sigh.
+ // A specific case that this affects is /(^|a)+/ matching "a".
+ // If we don't save the kInstAlt, we will match the whole "a" (0,1)
+ // but in fact the correct leftmost-first match is the leading "" (0,0).
+ }
+ DCHECK_LE(n, q->size());
+ if (n > 0 && inst[n-1] == Mark)
+ n--;
+
+ // If there are no empty-width instructions waiting to execute,
+ // then the extra flag bits will not be used, so there is no
+ // point in saving them. (Discarding them reduces the number
+ // of distinct states.)
+ if (needflags == 0)
+ flag &= kFlagMatch;
+
+ // NOTE(rsc): The code above cannot do flag &= needflags,
+ // because if the right flags were present to pass the current
+ // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
+ // might be reached that in turn need different flags.
+ // The only sure thing is that if there are no kInstEmptyWidth
+ // instructions at all, no flags will be needed.
+ // We could do the extra work to figure out the full set of
+ // possibly needed flags by exploring past the kInstEmptyWidth
+ // instructions, but the check above -- are any flags needed
+ // at all? -- handles the most common case. More fine-grained
+ // analysis can only be justified by measurements showing that
+ // too many redundant states are being allocated.
+
+ // If there are no Insts in the list, it's a dead state,
+ // which is useful to signal with a special pointer so that
+ // the execution loop can stop early. This is only okay
+ // if the state is *not* a matching state.
+ if (n == 0 && flag == 0) {
+ delete[] inst;
+ if (DebugDFA)
+ fprintf(stderr, " -> DeadState\n");
+ return DeadState;
+ }
+
+ // If we're in longest match mode, the state is a sequence of
+ // unordered state sets separated by Marks. Sort each set
+ // to canonicalize, to reduce the number of distinct sets stored.
+ if (kind_ == Prog::kLongestMatch) {
+ int* ip = inst;
+ int* ep = ip + n;
+ while (ip < ep) {
+ int* markp = ip;
+ while (markp < ep && *markp != Mark)
+ markp++;
+ sort(ip, markp);
+ if (markp < ep)
+ markp++;
+ ip = markp;
+ }
+ }
+
+ // Save the needed empty-width flags in the top bits for use later.
+ flag |= needflags << kFlagNeedShift;
+
+ State* state = CachedState(inst, n, flag);
+ delete[] inst;
+ return state;
+}
+
+// Looks in the State cache for a State matching inst, ninst, flag.
+// If one is found, returns it. If one is not found, allocates one,
+// inserts it in the cache, and returns it.
+DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
+ if (DEBUG_MODE)
+ mutex_.AssertHeld();
+
+ // Look in the cache for a pre-existing state.
+ State state = { inst, ninst, flag, NULL };
+ StateSet::iterator it = state_cache_.find(&state);
+ if (it != state_cache_.end()) {
+ if (DebugDFA)
+ fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
+ return *it;
+ }
+
+ // Must have enough memory for new state.
+ // In addition to what we're going to allocate,
+ // the state cache hash table seems to incur about 32 bytes per
+ // State*, empirically.
+ const int kStateCacheOverhead = 32;
+ int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
+ int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
+ if (mem_budget_ < mem + kStateCacheOverhead) {
+ mem_budget_ = -1;
+ return NULL;
+ }
+ mem_budget_ -= mem + kStateCacheOverhead;
+
+ // Allocate new state, along with room for next and inst.
+ char* space = new char[mem];
+ State* s = reinterpret_cast<State*>(space);
+ s->next_ = reinterpret_cast<State**>(s + 1);
+ s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
+ memset(s->next_, 0, nnext*sizeof s->next_[0]);
+ memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
+ s->ninst_ = ninst;
+ s->flag_ = flag;
+ if (DebugDFA)
+ fprintf(stderr, " -> %s\n", DumpState(s).c_str());
+
+ // Put state in cache and return it.
+ state_cache_.insert(s);
+ return s;
+}
+
+// Clear the cache. Must hold cache_mutex_.w or be in destructor.
+void DFA::ClearCache() {
+ // In case state_cache_ doesn't support deleting entries
+ // during iteration, copy into a vector and then delete.
+ vector<State*> v;
+ v.reserve(state_cache_.size());
+ for (StateSet::iterator it = state_cache_.begin();
+ it != state_cache_.end(); ++it)
+ v.push_back(*it);
+ state_cache_.clear();
+ for (int i = 0; i < v.size(); i++)
+ delete[] reinterpret_cast<const char*>(v[i]);
+}
+
+// Copies insts in state s to the work queue q.
+void DFA::StateToWorkq(State* s, Workq* q) {
+ q->clear();
+ for (int i = 0; i < s->ninst_; i++) {
+ if (s->inst_[i] == Mark)
+ q->mark();
+ else
+ q->insert_new(s->inst_[i]);
+ }
+}
+
+// Adds ip to the work queue, following empty arrows according to flag
+// and expanding kInstAlt instructions (two-target gotos).
+void DFA::AddToQueue(Workq* q, int id, uint flag) {
+
+ // Use astack_ to hold our stack of states yet to process.
+ // It is sized to have room for nastack_ == 2*prog->size() + nmark
+ // instructions, which is enough: each instruction can be
+ // processed by the switch below only once, and the processing
+ // pushes at most two instructions plus maybe a mark.
+ // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
+ int* stk = astack_;
+ int nstk = 0;
+
+ stk[nstk++] = id;
+ while (nstk > 0) {
+ DCHECK_LE(nstk, nastack_);
+ id = stk[--nstk];
+
+ if (id == Mark) {
+ q->mark();
+ continue;
+ }
+
+ if (id == 0)
+ continue;
+
+ // If ip is already on the queue, nothing to do.
+ // Otherwise add it. We don't actually keep all the ones
+ // that get added -- for example, kInstAlt is ignored
+ // when on a work queue -- but adding all ip's here
+ // increases the likelihood of q->contains(id),
+ // reducing the amount of duplicated work.
+ if (q->contains(id))
+ continue;
+ q->insert_new(id);
+
+ // Process instruction.
+ Prog::Inst* ip = prog_->inst(id);
+ switch (ip->opcode()) {
+ case kInstFail: // can't happen: discarded above
+ break;
+
+ case kInstByteRange: // just save these on the queue
+ case kInstMatch:
+ break;
+
+ case kInstCapture: // DFA treats captures as no-ops.
+ case kInstNop:
+ stk[nstk++] = ip->out();
+ break;
+
+ case kInstAlt: // two choices: expand both, in order
+ case kInstAltMatch:
+ // Want to visit out then out1, so push on stack in reverse order.
+ // This instruction is the [00-FF]* loop at the beginning of
+ // a leftmost-longest unanchored search, separate out from out1
+ // with a Mark, so that out1's threads (which will start farther
+ // to the right in the string being searched) are lower priority
+ // than the current ones.
+ stk[nstk++] = ip->out1();
+ if (q->maxmark() > 0 &&
+ id == prog_->start_unanchored() && id != prog_->start())
+ stk[nstk++] = Mark;
+ stk[nstk++] = ip->out();
+ break;
+
+ case kInstEmptyWidth:
+ if ((ip->empty() & flag) == ip->empty())
+ stk[nstk++] = ip->out();
+ break;
+ }
+ }
+}
+
+// Running of work queues. In the work queue, order matters:
+// the queue is sorted in priority order. If instruction i comes before j,
+// then the instructions that i produces during the run must come before
+// the ones that j produces. In order to keep this invariant, all the
+// work queue runners have to take an old queue to process and then
+// also a new queue to fill in. It's not acceptable to add to the end of
+// an existing queue, because new instructions will not end up in the
+// correct position.
+
+// Runs the work queue, processing the empty strings indicated by flag.
+// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
+// both ^ and $. It is important that callers pass all flags at once:
+// processing both ^ and $ is not the same as first processing only ^
+// and then processing only $. Doing the two-step sequence won't match
+// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
+// exhibited by existing implementations).
+void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
+ newq->clear();
+ for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
+ if (oldq->is_mark(*i))
+ AddToQueue(newq, Mark, flag);
+ else
+ AddToQueue(newq, *i, flag);
+ }
+}
+
+// Runs the work queue, processing the single byte c followed by any empty
+// strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine,
+// means to match c$. Sets the bool *ismatch to true if the end of the
+// regular expression program has been reached (the regexp has matched).
+void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
+ int c, uint flag, bool* ismatch,
+ Prog::MatchKind kind,
+ int new_byte_loop) {
+ if (DEBUG_MODE)
+ mutex_.AssertHeld();
+
+ newq->clear();
+ for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
+ if (oldq->is_mark(*i)) {
+ if (*ismatch)
+ return;
+ newq->mark();
+ continue;
+ }
+ int id = *i;
+ Prog::Inst* ip = prog_->inst(id);
+ switch (ip->opcode()) {
+ case kInstFail: // never succeeds
+ case kInstCapture: // already followed
+ case kInstNop: // already followed
+ case kInstAlt: // already followed
+ case kInstAltMatch: // already followed
+ case kInstEmptyWidth: // already followed
+ break;
+
+ case kInstByteRange: // can follow if c is in range
+ if (ip->Matches(c))
+ AddToQueue(newq, ip->out(), flag);
+ break;
+
+ case kInstMatch:
+ if (prog_->anchor_end() && c != kByteEndText)
+ break;
+ *ismatch = true;
+ if (kind == Prog::kFirstMatch) {
+ // Can stop processing work queue since we found a match.
+ return;
+ }
+ break;
+ }
+ }
+
+ if (DebugDFA)
+ fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
+ c, flag, DumpWorkq(newq).c_str(), *ismatch);
+}
+
+// Processes input byte c in state, returning new state.
+// Caller does not hold mutex.
+DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
+ // Keep only one RunStateOnByte going
+ // even if the DFA is being run by multiple threads.
+ MutexLock l(&mutex_);
+ return RunStateOnByte(state, c);
+}
+
+// Processes input byte c in state, returning new state.
+DFA::State* DFA::RunStateOnByte(State* state, int c) {
+ if (DEBUG_MODE)
+ mutex_.AssertHeld();
+ if (state <= SpecialStateMax) {
+ if (state == FullMatchState) {
+ // It is convenient for routines like PossibleMatchRange
+ // if we implement RunStateOnByte for FullMatchState:
+ // once you get into this state you never get out,
+ // so it's pretty easy.
+ return FullMatchState;
+ }
+ if (state == DeadState) {
+ LOG(DFATAL) << "DeadState in RunStateOnByte";
+ return NULL;
+ }
+ if (state == NULL) {
+ LOG(DFATAL) << "NULL state in RunStateOnByte";
+ return NULL;
+ }
+ LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
+ return NULL;
+ }
+
+ // If someone else already computed this, return it.
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
+ if (state->next_[ByteMap(c)])
+ return state->next_[ByteMap(c)];
+
+ // Convert state into Workq.
+ StateToWorkq(state, q0_);
+
+ // Flags marking the kinds of empty-width things (^ $ etc)
+ // around this byte. Before the byte we have the flags recorded
+ // in the State structure itself. After the byte we have
+ // nothing yet (but that will change: read on).
+ uint needflag = state->flag_ >> kFlagNeedShift;
+ uint beforeflag = state->flag_ & kFlagEmptyMask;
+ uint oldbeforeflag = beforeflag;
+ uint afterflag = 0;
+
+ if (c == '\n') {
+ // Insert implicit $ and ^ around \n
+ beforeflag |= kEmptyEndLine;
+ afterflag |= kEmptyBeginLine;
+ }
+
+ if (c == kByteEndText) {
+ // Insert implicit $ and \z before the fake "end text" byte.
+ beforeflag |= kEmptyEndLine | kEmptyEndText;
+ }
+
+ // The state flag kFlagLastWord says whether the last
+ // byte processed was a word character. Use that info to
+ // insert empty-width (non-)word boundaries.
+ bool islastword = state->flag_ & kFlagLastWord;
+ bool isword = (c != kByteEndText && Prog::IsWordChar(c));
+ if (isword == islastword)
+ beforeflag |= kEmptyNonWordBoundary;
+ else
+ beforeflag |= kEmptyWordBoundary;
+
+ // Okay, finally ready to run.
+ // Only useful to rerun on empty string if there are new, useful flags.
+ if (beforeflag & ~oldbeforeflag & needflag) {
+ RunWorkqOnEmptyString(q0_, q1_, beforeflag);
+ swap(q0_, q1_);
+ }
+ bool ismatch = false;
+ RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
+ swap(q0_, q1_);
+
+ // Save afterflag along with ismatch and isword in new state.
+ uint flag = afterflag;
+ if (ismatch)
+ flag |= kFlagMatch;
+ if (isword)
+ flag |= kFlagLastWord;
+
+ State* ns = WorkqToCachedState(q0_, flag);
+
+ // Write barrier before updating state->next_ so that the
+ // main search loop can proceed without any locking, for speed.
+ // (Otherwise it would need one mutex operation per input byte.)
+ // The annotations below tell race detectors that:
+ // a) the access to next_ should be ignored,
+ // b) 'ns' is properly published.
+ WriteMemoryBarrier(); // Flush ns before linking to it.
+ ANNOTATE_PUBLISH_MEMORY_RANGE(ns, sizeof(*ns));
+
+ ANNOTATE_IGNORE_WRITES_BEGIN();
+ state->next_[ByteMap(c)] = ns;
+ ANNOTATE_IGNORE_WRITES_END();
+ return ns;
+}
+
+
+//////////////////////////////////////////////////////////////////////
+// DFA cache reset.
+
+// Reader-writer lock helper.
+//
+// The DFA uses a reader-writer mutex to protect the state graph itself.
+// Traversing the state graph requires holding the mutex for reading,
+// and discarding the state graph and starting over requires holding the
+// lock for writing. If a search needs to expand the graph but is out
+// of memory, it will need to drop its read lock and then acquire the
+// write lock. Since it cannot then atomically downgrade from write lock
+// to read lock, it runs the rest of the search holding the write lock.
+// (This probably helps avoid repeated contention, but really the decision
+// is forced by the Mutex interface.) It's a bit complicated to keep
+// track of whether the lock is held for reading or writing and thread
+// that through the search, so instead we encapsulate it in the RWLocker
+// and pass that around.
+
+class DFA::RWLocker {
+ public:
+ explicit RWLocker(Mutex* mu);
+ ~RWLocker();
+
+ // If the lock is only held for reading right now,
+ // drop the read lock and re-acquire for writing.
+ // Subsequent calls to LockForWriting are no-ops.
+ // Notice that the lock is *released* temporarily.
+ void LockForWriting();
+
+ // Returns whether the lock is already held for writing.
+ bool IsLockedForWriting() {
+ return writing_;
+ }
+
+ private:
+ Mutex* mu_;
+ bool writing_;
+
+ DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
+};
+
+DFA::RWLocker::RWLocker(Mutex* mu)
+ : mu_(mu), writing_(false) {
+
+ mu_->ReaderLock();
+}
+
+// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
+// does not support lock upgrade.
+void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
+ if (!writing_) {
+ mu_->ReaderUnlock();
+ mu_->Lock();
+ writing_ = true;
+ }
+}
+
+DFA::RWLocker::~RWLocker() {
+ if (writing_)
+ mu_->WriterUnlock();
+ else
+ mu_->ReaderUnlock();
+}
+
+
+// When the DFA's State cache fills, we discard all the states in the
+// cache and start over. Many threads can be using and adding to the
+// cache at the same time, so we synchronize using the cache_mutex_
+// to keep from stepping on other threads. Specifically, all the
+// threads using the current cache hold cache_mutex_ for reading.
+// When a thread decides to flush the cache, it drops cache_mutex_
+// and then re-acquires it for writing. That ensures there are no
+// other threads accessing the cache anymore. The rest of the search
+// runs holding cache_mutex_ for writing, avoiding any contention
+// with or cache pollution caused by other threads.
+
+void DFA::ResetCache(RWLocker* cache_lock) {
+ // Re-acquire the cache_mutex_ for writing (exclusive use).
+ bool was_writing = cache_lock->IsLockedForWriting();
+ cache_lock->LockForWriting();
+
+ // If we already held cache_mutex_ for writing, it means
+ // this invocation of Search() has already reset the
+ // cache once already. That's a pretty clear indication
+ // that the cache is too small. Warn about that, once.
+ // TODO(rsc): Only warn if state_cache_.size() < some threshold.
+ if (was_writing && !cache_warned_) {
+ LOG(INFO) << "DFA memory cache could be too small: "
+ << "only room for " << state_cache_.size() << " states.";
+ cache_warned_ = true;
+ }
+
+ // Clear the cache, reset the memory budget.
+ for (int i = 0; i < kMaxStart; i++) {
+ start_[i].start = NULL;
+ start_[i].firstbyte = kFbUnknown;
+ }
+ ClearCache();
+ mem_budget_ = state_budget_;
+}
+
+// Typically, a couple States do need to be preserved across a cache
+// reset, like the State at the current point in the search.
+// The StateSaver class helps keep States across cache resets.
+// It makes a copy of the state's guts outside the cache (before the reset)
+// and then can be asked, after the reset, to recreate the State
+// in the new cache. For example, in a DFA method ("this" is a DFA):
+//
+// StateSaver saver(this, s);
+// ResetCache(cache_lock);
+// s = saver.Restore();
+//
+// The saver should always have room in the cache to re-create the state,
+// because resetting the cache locks out all other threads, and the cache
+// is known to have room for at least a couple states (otherwise the DFA
+// constructor fails).
+
+class DFA::StateSaver {
+ public:
+ explicit StateSaver(DFA* dfa, State* state);
+ ~StateSaver();
+
+ // Recreates and returns a state equivalent to the
+ // original state passed to the constructor.
+ // Returns NULL if the cache has filled, but
+ // since the DFA guarantees to have room in the cache
+ // for a couple states, should never return NULL
+ // if used right after ResetCache.
+ State* Restore();
+
+ private:
+ DFA* dfa_; // the DFA to use
+ int* inst_; // saved info from State
+ int ninst_;
+ uint flag_;
+ bool is_special_; // whether original state was special
+ State* special_; // if is_special_, the original state
+
+ DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
+};
+
+DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
+ dfa_ = dfa;
+ if (state <= SpecialStateMax) {
+ inst_ = NULL;
+ ninst_ = 0;
+ flag_ = 0;
+ is_special_ = true;
+ special_ = state;
+ return;
+ }
+ is_special_ = false;
+ special_ = NULL;
+ flag_ = state->flag_;
+ ninst_ = state->ninst_;
+ inst_ = new int[ninst_];
+ memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
+}
+
+DFA::StateSaver::~StateSaver() {
+ if (!is_special_)
+ delete[] inst_;
+}
+
+DFA::State* DFA::StateSaver::Restore() {
+ if (is_special_)
+ return special_;
+ MutexLock l(&dfa_->mutex_);
+ State* s = dfa_->CachedState(inst_, ninst_, flag_);
+ if (s == NULL)
+ LOG(DFATAL) << "StateSaver failed to restore state.";
+ return s;
+}
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// DFA execution.
+//
+// The basic search loop is easy: start in a state s and then for each
+// byte c in the input, s = s->next[c].
+//
+// This simple description omits a few efficiency-driven complications.
+//
+// First, the State graph is constructed incrementally: it is possible
+// that s->next[c] is null, indicating that that state has not been
+// fully explored. In this case, RunStateOnByte must be invoked to
+// determine the next state, which is cached in s->next[c] to save
+// future effort. An alternative reason for s->next[c] to be null is
+// that the DFA has reached a so-called "dead state", in which any match
+// is no longer possible. In this case RunStateOnByte will return NULL
+// and the processing of the string can stop early.
+//
+// Second, a 256-element pointer array for s->next_ makes each State
+// quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[]
+// maps from bytes to "byte classes" and then next_ only needs to have
+// as many pointers as there are byte classes. A byte class is simply a
+// range of bytes that the regexp never distinguishes between.
+// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
+// 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit
+// but in exchange we typically cut the size of a State (and thus our
+// memory footprint) by about 5-10x. The comments still refer to
+// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
+//
+// Third, it is common for a DFA for an unanchored match to begin in a
+// state in which only one particular byte value can take the DFA to a
+// different state. That is, s->next[c] != s for only one c. In this
+// situation, the DFA can do better than executing the simple loop.
+// Instead, it can call memchr to search very quickly for the byte c.
+// Whether the start state has this property is determined during a
+// pre-compilation pass, and if so, the byte b is passed to the search
+// loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
+//
+// Fourth, the desired behavior is to search for the leftmost-best match
+// (approximately, the same one that Perl would find), which is not
+// necessarily the match ending earliest in the string. Each time a
+// match is found, it must be noted, but the DFA must continue on in
+// hope of finding a higher-priority match. In some cases, the caller only
+// cares whether there is any match at all, not which one is found.
+// The "want_earliest_match" flag causes the search to stop at the first
+// match found.
+//
+// Fifth, one algorithm that uses the DFA needs it to run over the
+// input string backward, beginning at the end and ending at the beginning.
+// Passing false for the "run_forward" flag causes the DFA to run backward.
+//
+// The checks for these last three cases, which in a naive implementation
+// would be performed once per input byte, slow the general loop enough
+// to merit specialized versions of the search loop for each of the
+// eight possible settings of the three booleans. Rather than write
+// eight different functions, we write one general implementation and then
+// inline it to create the specialized ones.
+//
+// Note that matches are delayed by one byte, to make it easier to
+// accomodate match conditions depending on the next input byte (like $ and \b).
+// When s->next[c]->IsMatch(), it means that there is a match ending just
+// *before* byte c.
+
+// The generic search loop. Searches text for a match, returning
+// the pointer to the end of the chosen match, or NULL if no match.
+// The bools are equal to the same-named variables in params, but
+// making them function arguments lets the inliner specialize
+// this function to each combination (see two paragraphs above).
+inline bool DFA::InlinedSearchLoop(SearchParams* params,
+ bool have_firstbyte,
+ bool want_earliest_match,
+ bool run_forward) {
+ State* start = params->start;
+ const uint8* bp = BytePtr(params->text.begin()); // start of text
+ const uint8* p = bp; // text scanning point
+ const uint8* ep = BytePtr(params->text.end()); // end of text
+ const uint8* resetp = NULL; // p at last cache reset
+ if (!run_forward)
+ swap(p, ep);
+
+ const uint8* bytemap = prog_->bytemap();
+ const uint8* lastmatch = NULL; // most recent matching position in text
+ bool matched = false;
+ State* s = start;
+
+ if (s->IsMatch()) {
+ matched = true;
+ lastmatch = p;
+ if (want_earliest_match) {
+ params->ep = reinterpret_cast<const char*>(lastmatch);
+ return true;
+ }
+ }
+
+ while (p != ep) {
+ if (DebugDFA)
+ fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
+ DumpState(s).c_str());
+ if (have_firstbyte && s == start) {
+ // In start state, only way out is to find firstbyte,
+ // so use optimized assembly in memchr to skip ahead.
+ // If firstbyte isn't found, we can skip to the end
+ // of the string.
+ if (run_forward) {
+ if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
+ p = ep;
+ break;
+ }
+ } else {
+ if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
+ p = ep;
+ break;
+ }
+ p++;
+ }
+ }
+
+ int c;
+ if (run_forward)
+ c = *p++;
+ else
+ c = *--p;
+
+ // Note that multiple threads might be consulting
+ // s->next_[bytemap[c]] simultaneously.
+ // RunStateOnByte takes care of the appropriate locking,
+ // including a memory barrier so that the unlocked access
+ // (sometimes known as "double-checked locking") is safe.
+ // The alternative would be either one DFA per thread
+ // or one mutex operation per input byte.
+ //
+ // ns == DeadState means the state is known to be dead
+ // (no more matches are possible).
+ // ns == NULL means the state has not yet been computed
+ // (need to call RunStateOnByteUnlocked).
+ // RunStateOnByte returns ns == NULL if it is out of memory.
+ // ns == FullMatchState means the rest of the string matches.
+ //
+ // Okay to use bytemap[] not ByteMap() here, because
+ // c is known to be an actual byte and not kByteEndText.
+
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
+ State* ns = s->next_[bytemap[c]];
+ if (ns == NULL) {
+ ns = RunStateOnByteUnlocked(s, c);
+ if (ns == NULL) {
+ // After we reset the cache, we hold cache_mutex exclusively,
+ // so if resetp != NULL, it means we filled the DFA state
+ // cache with this search alone (without any other threads).
+ // Benchmarks show that doing a state computation on every
+ // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
+ // same at about 2 MB/s. Unless we're processing an average
+ // of 10 bytes per state computation, fail so that RE2 can
+ // fall back to the NFA.
+ if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
+ (p - resetp) < 10*state_cache_.size()) {
+ params->failed = true;
+ return false;
+ }
+ resetp = p;
+
+ // Prepare to save start and s across the reset.
+ StateSaver save_start(this, start);
+ StateSaver save_s(this, s);
+
+ // Discard all the States in the cache.
+ ResetCache(params->cache_lock);
+
+ // Restore start and s so we can continue.
+ if ((start = save_start.Restore()) == NULL ||
+ (s = save_s.Restore()) == NULL) {
+ // Restore already did LOG(DFATAL).
+ params->failed = true;
+ return false;
+ }
+ ns = RunStateOnByteUnlocked(s, c);
+ if (ns == NULL) {
+ LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
+ params->failed = true;
+ return false;
+ }
+ }
+ }
+ if (ns <= SpecialStateMax) {
+ if (ns == DeadState) {
+ params->ep = reinterpret_cast<const char*>(lastmatch);
+ return matched;
+ }
+ // FullMatchState
+ params->ep = reinterpret_cast<const char*>(ep);
+ return true;
+ }
+ s = ns;
+
+ if (s->IsMatch()) {
+ matched = true;
+ // The DFA notices the match one byte late,
+ // so adjust p before using it in the match.
+ if (run_forward)
+ lastmatch = p - 1;
+ else
+ lastmatch = p + 1;
+ if (DebugDFA)
+ fprintf(stderr, "match @%d! [%s]\n",
+ static_cast<int>(lastmatch - bp),
+ DumpState(s).c_str());
+
+ if (want_earliest_match) {
+ params->ep = reinterpret_cast<const char*>(lastmatch);
+ return true;
+ }
+ }
+ }
+
+ // Peek in state to see if a match is coming up.
+ if (params->matches && kind_ == Prog::kManyMatch) {
+ vector<int>* v = params->matches;
+ v->clear();
+ if (s > SpecialStateMax) {
+ for (int i = 0; i < s->ninst_; i++) {
+ Prog::Inst* ip = prog_->inst(s->inst_[i]);
+ if (ip->opcode() == kInstMatch)
+ v->push_back(ip->match_id());
+ }
+ }
+ }
+
+
+ // Process one more byte to see if it triggers a match.
+ // (Remember, matches are delayed one byte.)
+ int lastbyte;
+ if (run_forward) {
+ if (params->text.end() == params->context.end())
+ lastbyte = kByteEndText;
+ else
+ lastbyte = params->text.end()[0] & 0xFF;
+ } else {
+ if (params->text.begin() == params->context.begin())
+ lastbyte = kByteEndText;
+ else
+ lastbyte = params->text.begin()[-1] & 0xFF;
+ }
+
+ MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
+ State* ns = s->next_[ByteMap(lastbyte)];
+ if (ns == NULL) {
+ ns = RunStateOnByteUnlocked(s, lastbyte);
+ if (ns == NULL) {
+ StateSaver save_s(this, s);
+ ResetCache(params->cache_lock);
+ if ((s = save_s.Restore()) == NULL) {
+ params->failed = true;
+ return false;
+ }
+ ns = RunStateOnByteUnlocked(s, lastbyte);
+ if (ns == NULL) {
+ LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
+ params->failed = true;
+ return false;
+ }
+ }
+ }
+ s = ns;
+ if (DebugDFA)
+ fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
+ if (s == FullMatchState) {
+ params->ep = reinterpret_cast<const char*>(ep);
+ return true;
+ }
+ if (s > SpecialStateMax && s->IsMatch()) {
+ matched = true;
+ lastmatch = p;
+ if (DebugDFA)
+ fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
+ DumpState(s).c_str());
+ }
+ params->ep = reinterpret_cast<const char*>(lastmatch);
+ return matched;
+}
+
+// Inline specializations of the general loop.
+bool DFA::SearchFFF(SearchParams* params) {
+ return InlinedSearchLoop(params, 0, 0, 0);
+}
+bool DFA::SearchFFT(SearchParams* params) {
+ return InlinedSearchLoop(params, 0, 0, 1);
+}
+bool DFA::SearchFTF(SearchParams* params) {
+ return InlinedSearchLoop(params, 0, 1, 0);
+}
+bool DFA::SearchFTT(SearchParams* params) {
+ return InlinedSearchLoop(params, 0, 1, 1);
+}
+bool DFA::SearchTFF(SearchParams* params) {
+ return InlinedSearchLoop(params, 1, 0, 0);
+}
+bool DFA::SearchTFT(SearchParams* params) {
+ return InlinedSearchLoop(params, 1, 0, 1);
+}
+bool DFA::SearchTTF(SearchParams* params) {
+ return InlinedSearchLoop(params, 1, 1, 0);
+}
+bool DFA::SearchTTT(SearchParams* params) {
+ return InlinedSearchLoop(params, 1, 1, 1);
+}
+
+// For debugging, calls the general code directly.
+bool DFA::SlowSearchLoop(SearchParams* params) {
+ return InlinedSearchLoop(params,
+ params->firstbyte >= 0,
+ params->want_earliest_match,
+ params->run_forward);
+}
+
+// For performance, calls the appropriate specialized version
+// of InlinedSearchLoop.
+bool DFA::FastSearchLoop(SearchParams* params) {
+ // Because the methods are private, the Searches array
+ // cannot be declared at top level.
+ static bool (DFA::*Searches[])(SearchParams*) = {
+ &DFA::SearchFFF,
+ &DFA::SearchFFT,
+ &DFA::SearchFTF,
+ &DFA::SearchFTT,
+ &DFA::SearchTFF,
+ &DFA::SearchTFT,
+ &DFA::SearchTTF,
+ &DFA::SearchTTT,
+ };
+
+ bool have_firstbyte = (params->firstbyte >= 0);
+ int index = 4 * have_firstbyte +
+ 2 * params->want_earliest_match +
+ 1 * params->run_forward;
+ return (this->*Searches[index])(params);
+}
+
+
+// The discussion of DFA execution above ignored the question of how
+// to determine the initial state for the search loop. There are two
+// factors that influence the choice of start state.
+//
+// The first factor is whether the search is anchored or not.
+// The regexp program (Prog*) itself has
+// two different entry points: one for anchored searches and one for
+// unanchored searches. (The unanchored version starts with a leading ".*?"
+// and then jumps to the anchored one.)
+//
+// The second factor is where text appears in the larger context, which
+// determines which empty-string operators can be matched at the beginning
+// of execution. If text is at the very beginning of context, \A and ^ match.
+// Otherwise if text is at the beginning of a line, then ^ matches.
+// Otherwise it matters whether the character before text is a word character
+// or a non-word character.
+//
+// The two cases (unanchored vs not) and four cases (empty-string flags)
+// combine to make the eight cases recorded in the DFA's begin_text_[2],
+// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
+// StartInfos. The start state for each is filled in the first time it
+// is used for an actual search.
+
+// Examines text, context, and anchored to determine the right start
+// state for the DFA search loop. Fills in params and returns true on success.
+// Returns false on failure.
+bool DFA::AnalyzeSearch(SearchParams* params) {
+ const StringPiece& text = params->text;
+ const StringPiece& context = params->context;
+
+ // Sanity check: make sure that text lies within context.
+ if (text.begin() < context.begin() || text.end() > context.end()) {
+ LOG(DFATAL) << "Text is not inside context.";
+ params->start = DeadState;
+ return true;
+ }
+
+ // Determine correct search type.
+ int start;
+ uint flags;
+ if (params->run_forward) {
+ if (text.begin() == context.begin()) {
+ start = kStartBeginText;
+ flags = kEmptyBeginText|kEmptyBeginLine;
+ } else if (text.begin()[-1] == '\n') {
+ start = kStartBeginLine;
+ flags = kEmptyBeginLine;
+ } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
+ start = kStartAfterWordChar;
+ flags = kFlagLastWord;
+ } else {
+ start = kStartAfterNonWordChar;
+ flags = 0;
+ }
+ } else {
+ if (text.end() == context.end()) {
+ start = kStartBeginText;
+ flags = kEmptyBeginText|kEmptyBeginLine;
+ } else if (text.end()[0] == '\n') {
+ start = kStartBeginLine;
+ flags = kEmptyBeginLine;
+ } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
+ start = kStartAfterWordChar;
+ flags = kFlagLastWord;
+ } else {
+ start = kStartAfterNonWordChar;
+ flags = 0;
+ }
+ }
+ if (params->anchored || prog_->anchor_start())
+ start |= kStartAnchored;
+ StartInfo* info = &start_[start];
+
+ // Try once without cache_lock for writing.
+ // Try again after resetting the cache
+ // (ResetCache will relock cache_lock for writing).
+ if (!AnalyzeSearchHelper(params, info, flags)) {
+ ResetCache(params->cache_lock);
+ if (!AnalyzeSearchHelper(params, info, flags)) {
+ LOG(DFATAL) << "Failed to analyze start state.";
+ params->failed = true;
+ return false;
+ }
+ }
+
+ if (DebugDFA)
+ fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
+ params->anchored, params->run_forward, flags,
+ DumpState(info->start).c_str(), info->firstbyte);
+
+ params->start = info->start;
+ params->firstbyte = info->firstbyte;
+
+ return true;
+}
+
+// Fills in info if needed. Returns true on success, false on failure.
+bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
+ uint flags) {
+ // Quick check; okay because of memory barriers below.
+ if (info->firstbyte != kFbUnknown)
+ return true;
+
+ MutexLock l(&mutex_);
+ if (info->firstbyte != kFbUnknown)
+ return true;
+
+ q0_->clear();
+ AddToQueue(q0_,
+ params->anchored ? prog_->start() : prog_->start_unanchored(),
+ flags);
+ info->start = WorkqToCachedState(q0_, flags);
+ if (info->start == NULL)
+ return false;
+
+ if (info->start == DeadState) {
+ WriteMemoryBarrier(); // Synchronize with "quick check" above.
+ info->firstbyte = kFbNone;
+ return true;
+ }
+
+ if (info->start == FullMatchState) {
+ WriteMemoryBarrier(); // Synchronize with "quick check" above.
+ info->firstbyte = kFbNone; // will be ignored
+ return true;
+ }
+
+ // Compute info->firstbyte by running state on all
+ // possible byte values, looking for a single one that
+ // leads to a different state.
+ int firstbyte = kFbNone;
+ for (int i = 0; i < 256; i++) {
+ State* s = RunStateOnByte(info->start, i);
+ if (s == NULL) {
+ WriteMemoryBarrier(); // Synchronize with "quick check" above.
+ info->firstbyte = firstbyte;
+ return false;
+ }
+ if (s == info->start)
+ continue;
+ // Goes to new state...
+ if (firstbyte == kFbNone) {
+ firstbyte = i; // ... first one
+ } else {
+ firstbyte = kFbMany; // ... too many
+ break;
+ }
+ }
+ WriteMemoryBarrier(); // Synchronize with "quick check" above.
+ info->firstbyte = firstbyte;
+ return true;
+}
+
+// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
+bool DFA::Search(const StringPiece& text,
+ const StringPiece& context,
+ bool anchored,
+ bool want_earliest_match,
+ bool run_forward,
+ bool* failed,
+ const char** epp,
+ vector<int>* matches) {
+ *epp = NULL;
+ if (!ok()) {
+ *failed = true;
+ return false;
+ }
+ *failed = false;
+
+ if (DebugDFA) {
+ fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
+ fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
+ text.as_string().c_str(), anchored, want_earliest_match,
+ run_forward, kind_);
+ }
+
+ RWLocker l(&cache_mutex_);
+ SearchParams params(text, context, &l);
+ params.anchored = anchored;
+ params.want_earliest_match = want_earliest_match;
+ params.run_forward = run_forward;
+ params.matches = matches;
+
+ if (!AnalyzeSearch(&params)) {
+ *failed = true;
+ return false;
+ }
+ if (params.start == DeadState)
+ return false;
+ if (params.start == FullMatchState) {
+ if (run_forward == want_earliest_match)
+ *epp = text.begin();
+ else
+ *epp = text.end();
+ return true;
+ }
+ if (DebugDFA)
+ fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
+ bool ret = FastSearchLoop(&params);
+ if (params.failed) {
+ *failed = true;
+ return false;
+ }
+ *epp = params.ep;
+ return ret;
+}
+
+// Deletes dfa.
+//
+// This is a separate function so that
+// prog.h can be used without moving the definition of
+// class DFA out of this file. If you set
+// prog->dfa_ = dfa;
+// then you also have to set
+// prog->delete_dfa_ = DeleteDFA;
+// so that ~Prog can delete the dfa.
+static void DeleteDFA(DFA* dfa) {
+ delete dfa;
+}
+
+DFA* Prog::GetDFA(MatchKind kind) {
+ DFA*volatile* pdfa;
+ if (kind == kFirstMatch || kind == kManyMatch) {
+ pdfa = &dfa_first_;
+ } else {
+ kind = kLongestMatch;
+ pdfa = &dfa_longest_;
+ }
+
+ // Quick check; okay because of memory barrier below.
+ DFA *dfa = *pdfa;
+ if (dfa != NULL) {
+ ANNOTATE_HAPPENS_AFTER(dfa);
+ return dfa;
+ }
+
+ MutexLock l(&dfa_mutex_);
+ dfa = *pdfa;
+ if (dfa != NULL)
+ return dfa;
+
+ // For a forward DFA, half the memory goes to each DFA.
+ // For a reverse DFA, all the memory goes to the
+ // "longest match" DFA, because RE2 never does reverse
+ // "first match" searches.
+ int64 m = dfa_mem_/2;
+ if (reversed_) {
+ if (kind == kLongestMatch || kind == kManyMatch)
+ m = dfa_mem_;
+ else
+ m = 0;
+ }
+ dfa = new DFA(this, kind, m);
+ delete_dfa_ = DeleteDFA;
+
+ // Synchronize with "quick check" above.
+ ANNOTATE_HAPPENS_BEFORE(dfa);
+ WriteMemoryBarrier();
+ *pdfa = dfa;
+
+ return dfa;
+}
+
+
+// Executes the regexp program to search in text,
+// which itself is inside the larger context. (As a convenience,
+// passing a NULL context is equivalent to passing text.)
+// Returns true if a match is found, false if not.
+// If a match is found, fills in match0->end() to point at the end of the match
+// and sets match0->begin() to text.begin(), since the DFA can't track
+// where the match actually began.
+//
+// This is the only external interface (class DFA only exists in this file).
+//
+bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
+ Anchor anchor, MatchKind kind,
+ StringPiece* match0, bool* failed, vector<int>* matches) {
+ *failed = false;
+
+ StringPiece context = const_context;
+ if (context.begin() == NULL)
+ context = text;
+ bool carat = anchor_start();
+ bool dollar = anchor_end();
+ if (reversed_) {
+ bool t = carat;
+ carat = dollar;
+ dollar = t;
+ }
+ if (carat && context.begin() != text.begin())
+ return false;
+ if (dollar && context.end() != text.end())
+ return false;
+
+ // Handle full match by running an anchored longest match
+ // and then checking if it covers all of text.
+ bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
+ bool endmatch = false;
+ if (kind == kManyMatch) {
+ endmatch = true;
+ } else if (kind == kFullMatch || anchor_end()) {
+ endmatch = true;
+ kind = kLongestMatch;
+ }
+
+ // If the caller doesn't care where the match is (just whether one exists),
+ // then we can stop at the very first match we find, the so-called
+ // "shortest match".
+ bool want_shortest_match = false;
+ if (match0 == NULL && !endmatch) {
+ want_shortest_match = true;
+ kind = kLongestMatch;
+ }
+
+ DFA* dfa = GetDFA(kind);
+ const char* ep;
+ bool matched = dfa->Search(text, context, anchored,
+ want_shortest_match, !reversed_,
+ failed, &ep, matches);
+ if (*failed)
+ return false;
+ if (!matched)
+ return false;
+ if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
+ return false;
+
+ // If caller cares, record the boundary of the match.
+ // We only know where it ends, so use the boundary of text
+ // as the beginning.
+ if (match0) {
+ if (reversed_)
+ *match0 = StringPiece(ep, text.end() - ep);
+ else
+ *match0 = StringPiece(text.begin(), ep - text.begin());
+ }
+ return true;
+}
+
+// Build out all states in DFA. Returns number of states.
+int DFA::BuildAllStates() {
+ if (!ok())
+ return 0;
+
+ // Pick out start state for unanchored search
+ // at beginning of text.
+ RWLocker l(&cache_mutex_);
+ SearchParams params(NULL, NULL, &l);
+ params.anchored = false;
+ if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
+ return 0;
+
+ // Add start state to work queue.
+ StateSet queued;
+ vector<State*> q;
+ queued.insert(params.start);
+ q.push_back(params.start);
+
+ // Flood to expand every state.
+ for (int i = 0; i < q.size(); i++) {
+ State* s = q[i];
+ for (int c = 0; c < 257; c++) {
+ State* ns = RunStateOnByteUnlocked(s, c);
+ if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
+ queued.insert(ns);
+ q.push_back(ns);
+ }
+ }
+ }
+
+ return q.size();
+}
+
+// Build out all states in DFA for kind. Returns number of states.
+int Prog::BuildEntireDFA(MatchKind kind) {
+ //LOG(ERROR) << "BuildEntireDFA is only for testing.";
+ return GetDFA(kind)->BuildAllStates();
+}
+
+// Computes min and max for matching string.
+// Won't return strings bigger than maxlen.
+bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
+ if (!ok())
+ return false;
+
+ // NOTE: if future users of PossibleMatchRange want more precision when
+ // presented with infinitely repeated elements, consider making this a
+ // parameter to PossibleMatchRange.
+ static int kMaxEltRepetitions = 0;
+
+ // Keep track of the number of times we've visited states previously. We only
+ // revisit a given state if it's part of a repeated group, so if the value
+ // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
+ // |*max| to |PrefixSuccessor(*max)|.
+ //
+ // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
+ // tradition, implicitly insert a '0' value at first use. We take advantage
+ // of that property below.
+ map<State*, int> previously_visited_states;
+
+ // Pick out start state for anchored search at beginning of text.
+ RWLocker l(&cache_mutex_);
+ SearchParams params(NULL, NULL, &l);
+ params.anchored = true;
+ if (!AnalyzeSearch(&params))
+ return false;
+ if (params.start == DeadState) { // No matching strings
+ *min = "";
+ *max = "";
+ return true;
+ }
+ if (params.start == FullMatchState) // Every string matches: no max
+ return false;
+
+ // The DFA is essentially a big graph rooted at params.start,
+ // and paths in the graph correspond to accepted strings.
+ // Each node in the graph has potentially 256+1 arrows
+ // coming out, one for each byte plus the magic end of
+ // text character kByteEndText.
+
+ // To find the smallest possible prefix of an accepted
+ // string, we just walk the graph preferring to follow
+ // arrows with the lowest bytes possible. To find the
+ // largest possible prefix, we follow the largest bytes
+ // possible.
+
+ // The test for whether there is an arrow from s on byte j is
+ // ns = RunStateOnByteUnlocked(s, j);
+ // if (ns == NULL)
+ // return false;
+ // if (ns != DeadState && ns->ninst > 0)
+ // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
+ // It returns NULL only if the DFA has run out of memory,
+ // in which case we can't be sure of anything.
+ // The second check sees whether there was graph built
+ // and whether it is interesting graph. Nodes might have
+ // ns->ninst == 0 if they exist only to represent the fact
+ // that a match was found on the previous byte.
+
+ // Build minimum prefix.
+ State* s = params.start;
+ min->clear();
+ for (int i = 0; i < maxlen; i++) {
+ if (previously_visited_states[s] > kMaxEltRepetitions) {
+ VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
+ << " for state s=" << s << " and min=" << CEscape(*min);
+ break;
+ }
+ previously_visited_states[s]++;
+
+ // Stop if min is a match.
+ State* ns = RunStateOnByteUnlocked(s, kByteEndText);
+ if (ns == NULL) // DFA out of memory
+ return false;
+ if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
+ break;
+
+ // Try to extend the string with low bytes.
+ bool extended = false;
+ for (int j = 0; j < 256; j++) {
+ ns = RunStateOnByteUnlocked(s, j);
+ if (ns == NULL) // DFA out of memory
+ return false;
+ if (ns == FullMatchState ||
+ (ns > SpecialStateMax && ns->ninst_ > 0)) {
+ extended = true;
+ min->append(1, j);
+ s = ns;
+ break;
+ }
+ }
+ if (!extended)
+ break;
+ }
+
+ // Build maximum prefix.
+ previously_visited_states.clear();
+ s = params.start;
+ max->clear();
+ for (int i = 0; i < maxlen; i++) {
+ if (previously_visited_states[s] > kMaxEltRepetitions) {
+ VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
+ << " for state s=" << s << " and max=" << CEscape(*max);
+ break;
+ }
+ previously_visited_states[s] += 1;
+
+ // Try to extend the string with high bytes.
+ bool extended = false;
+ for (int j = 255; j >= 0; j--) {
+ State* ns = RunStateOnByteUnlocked(s, j);
+ if (ns == NULL)
+ return false;
+ if (ns == FullMatchState ||
+ (ns > SpecialStateMax && ns->ninst_ > 0)) {
+ extended = true;
+ max->append(1, j);
+ s = ns;
+ break;
+ }
+ }
+ if (!extended) {
+ // Done, no need for PrefixSuccessor.
+ return true;
+ }
+ }
+
+ // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
+ *max = PrefixSuccessor(*max);
+
+ // If there are no bytes left, we have no way to say "there is no maximum
+ // string". We could make the interface more complicated and be able to
+ // return "there is no maximum but here is a minimum", but that seems like
+ // overkill -- the most common no-max case is all possible strings, so not
+ // telling the caller that the empty string is the minimum match isn't a
+ // great loss.
+ if (max->empty())
+ return false;
+
+ return true;
+}
+
+// PossibleMatchRange for a Prog.
+bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
+ DFA* dfa = NULL;
+ {
+ MutexLock l(&dfa_mutex_);
+ // Have to use dfa_longest_ to get all strings for full matches.
+ // For example, (a|aa) never matches aa in first-match mode.
+ if (dfa_longest_ == NULL) {
+ dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
+ delete_dfa_ = DeleteDFA;
+ }
+ dfa = dfa_longest_;
+ }
+ return dfa->PossibleMatchRange(min, max, maxlen);
+}
+
+} // namespace re2
« no previous file with comments | « third_party/re2/re2/compile.cc ('k') | third_party/re2/re2/filtered_re2.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698