Index: third_party/re2/re2/bitstate.cc |
diff --git a/third_party/re2/re2/bitstate.cc b/third_party/re2/re2/bitstate.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..518d6420127aa1e41dcb6a77625b7b19fc313616 |
--- /dev/null |
+++ b/third_party/re2/re2/bitstate.cc |
@@ -0,0 +1,378 @@ |
+// Copyright 2008 The RE2 Authors. All Rights Reserved. |
+// Use of this source code is governed by a BSD-style |
+// license that can be found in the LICENSE file. |
+ |
+// Tested by search_test.cc, exhaustive_test.cc, tester.cc |
+ |
+// Prog::SearchBitState is a regular expression search with submatch |
+// tracking for small regular expressions and texts. Like |
+// testing/backtrack.cc, it allocates a bit vector with (length of |
+// text) * (length of prog) bits, to make sure it never explores the |
+// same (character position, instruction) state multiple times. This |
+// limits the search to run in time linear in the length of the text. |
+// |
+// Unlike testing/backtrack.cc, SearchBitState is not recursive |
+// on the text. |
+// |
+// SearchBitState is a fast replacement for the NFA code on small |
+// regexps and texts when SearchOnePass cannot be used. |
+ |
+#include "re2/prog.h" |
+#include "re2/regexp.h" |
+ |
+namespace re2 { |
+ |
+struct Job { |
+ int id; |
+ int arg; |
+ const char* p; |
+}; |
+ |
+class BitState { |
+ public: |
+ explicit BitState(Prog* prog); |
+ ~BitState(); |
+ |
+ // The usual Search prototype. |
+ // Can only call Search once per BitState. |
+ bool Search(const StringPiece& text, const StringPiece& context, |
+ bool anchored, bool longest, |
+ StringPiece* submatch, int nsubmatch); |
+ |
+ private: |
+ inline bool ShouldVisit(int id, const char* p); |
+ void Push(int id, const char* p, int arg); |
+ bool GrowStack(); |
+ bool TrySearch(int id, const char* p); |
+ |
+ // Search parameters |
+ Prog* prog_; // program being run |
+ StringPiece text_; // text being searched |
+ StringPiece context_; // greater context of text being searched |
+ bool anchored_; // whether search is anchored at text.begin() |
+ bool longest_; // whether search wants leftmost-longest match |
+ bool endmatch_; // whether match must end at text.end() |
+ StringPiece *submatch_; // submatches to fill in |
+ int nsubmatch_; // # of submatches to fill in |
+ |
+ // Search state |
+ const char** cap_; // capture registers |
+ int ncap_; |
+ |
+ static const int VisitedBits = 32; |
+ uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked |
+ int nvisited_; // # of words in bitmap |
+ |
+ Job *job_; // stack of text positions to explore |
+ int njob_; |
+ int maxjob_; |
+}; |
+ |
+BitState::BitState(Prog* prog) |
+ : prog_(prog), |
+ anchored_(false), |
+ longest_(false), |
+ endmatch_(false), |
+ submatch_(NULL), |
+ nsubmatch_(0), |
+ cap_(NULL), |
+ ncap_(0), |
+ visited_(NULL), |
+ nvisited_(0), |
+ job_(NULL), |
+ njob_(0), |
+ maxjob_(0) { |
+} |
+ |
+BitState::~BitState() { |
+ delete[] visited_; |
+ delete[] job_; |
+ delete[] cap_; |
+} |
+ |
+// Should the search visit the pair ip, p? |
+// If so, remember that it was visited so that the next time, |
+// we don't repeat the visit. |
+bool BitState::ShouldVisit(int id, const char* p) { |
+ uint n = id * (text_.size() + 1) + (p - text_.begin()); |
+ if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1)))) |
+ return false; |
+ visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1)); |
+ return true; |
+} |
+ |
+// Grow the stack. |
+bool BitState::GrowStack() { |
+ // VLOG(0) << "Reallocate."; |
+ maxjob_ *= 2; |
+ Job* newjob = new Job[maxjob_]; |
+ memmove(newjob, job_, njob_*sizeof job_[0]); |
+ delete[] job_; |
+ job_ = newjob; |
+ if (njob_ >= maxjob_) { |
+ LOG(DFATAL) << "Job stack overflow."; |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+// Push the triple (id, p, arg) onto the stack, growing it if necessary. |
+void BitState::Push(int id, const char* p, int arg) { |
+ if (njob_ >= maxjob_) { |
+ if (!GrowStack()) |
+ return; |
+ } |
+ int op = prog_->inst(id)->opcode(); |
+ if (op == kInstFail) |
+ return; |
+ |
+ // Only check ShouldVisit when arg == 0. |
+ // When arg > 0, we are continuing a previous visit. |
+ if (arg == 0 && !ShouldVisit(id, p)) |
+ return; |
+ |
+ Job* j = &job_[njob_++]; |
+ j->id = id; |
+ j->p = p; |
+ j->arg = arg; |
+} |
+ |
+// Try a search from instruction id0 in state p0. |
+// Return whether it succeeded. |
+bool BitState::TrySearch(int id0, const char* p0) { |
+ bool matched = false; |
+ const char* end = text_.end(); |
+ njob_ = 0; |
+ Push(id0, p0, 0); |
+ while (njob_ > 0) { |
+ // Pop job off stack. |
+ --njob_; |
+ int id = job_[njob_].id; |
+ const char* p = job_[njob_].p; |
+ int arg = job_[njob_].arg; |
+ |
+ // Optimization: rather than push and pop, |
+ // code that is going to Push and continue |
+ // the loop simply updates ip, p, and arg |
+ // and jumps to CheckAndLoop. We have to |
+ // do the ShouldVisit check that Push |
+ // would have, but we avoid the stack |
+ // manipulation. |
+ if (0) { |
+ CheckAndLoop: |
+ if (!ShouldVisit(id, p)) |
+ continue; |
+ } |
+ |
+ // Visit ip, p. |
+ // VLOG(0) << "Job: " << ip->id() << " " |
+ // << (p - text_.begin()) << " " << arg; |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ case kInstFail: |
+ default: |
+ LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg; |
+ return false; |
+ |
+ case kInstAlt: |
+ // Cannot just |
+ // Push(ip->out1(), p, 0); |
+ // Push(ip->out(), p, 0); |
+ // If, during the processing of ip->out(), we encounter |
+ // ip->out1() via another path, we want to process it then. |
+ // Pushing it here will inhibit that. Instead, re-push |
+ // ip with arg==1 as a reminder to push ip->out1() later. |
+ switch (arg) { |
+ case 0: |
+ Push(id, p, 1); // come back when we're done |
+ id = ip->out(); |
+ goto CheckAndLoop; |
+ |
+ case 1: |
+ // Finished ip->out(); try ip->out1(). |
+ arg = 0; |
+ id = ip->out1(); |
+ goto CheckAndLoop; |
+ } |
+ LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
+ continue; |
+ |
+ case kInstAltMatch: |
+ // One opcode is byte range; the other leads to match. |
+ if (ip->greedy(prog_)) { |
+ // out1 is the match |
+ Push(ip->out1(), p, 0); |
+ id = ip->out1(); |
+ p = end; |
+ goto CheckAndLoop; |
+ } |
+ // out is the match - non-greedy |
+ Push(ip->out(), end, 0); |
+ id = ip->out(); |
+ goto CheckAndLoop; |
+ |
+ case kInstByteRange: { |
+ int c = -1; |
+ if (p < end) |
+ c = *p & 0xFF; |
+ if (ip->Matches(c)) { |
+ id = ip->out(); |
+ p++; |
+ goto CheckAndLoop; |
+ } |
+ continue; |
+ } |
+ |
+ case kInstCapture: |
+ switch (arg) { |
+ case 0: |
+ if (0 <= ip->cap() && ip->cap() < ncap_) { |
+ // Capture p to register, but save old value. |
+ Push(id, cap_[ip->cap()], 1); // come back when we're done |
+ cap_[ip->cap()] = p; |
+ } |
+ // Continue on. |
+ id = ip->out(); |
+ goto CheckAndLoop; |
+ case 1: |
+ // Finished ip->out(); restore the old value. |
+ cap_[ip->cap()] = p; |
+ continue; |
+ } |
+ LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
+ continue; |
+ |
+ case kInstEmptyWidth: |
+ if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
+ continue; |
+ id = ip->out(); |
+ goto CheckAndLoop; |
+ |
+ case kInstNop: |
+ id = ip->out(); |
+ goto CheckAndLoop; |
+ |
+ case kInstMatch: { |
+ if (endmatch_ && p != text_.end()) |
+ continue; |
+ |
+ // VLOG(0) << "Found match."; |
+ // We found a match. If the caller doesn't care |
+ // where the match is, no point going further. |
+ if (nsubmatch_ == 0) |
+ return true; |
+ |
+ // Record best match so far. |
+ // Only need to check end point, because this entire |
+ // call is only considering one start position. |
+ matched = true; |
+ cap_[1] = p; |
+ if (submatch_[0].data() == NULL || |
+ (longest_ && p > submatch_[0].end())) { |
+ for (int i = 0; i < nsubmatch_; i++) |
+ submatch_[i] = StringPiece(cap_[2*i], cap_[2*i+1] - cap_[2*i]); |
+ } |
+ |
+ // If going for first match, we're done. |
+ if (!longest_) |
+ return true; |
+ |
+ // If we used the entire text, no longer match is possible. |
+ if (p == text_.end()) |
+ return true; |
+ |
+ // Otherwise, continue on in hope of a longer match. |
+ continue; |
+ } |
+ } |
+ } |
+ return matched; |
+} |
+ |
+// Search text (within context) for prog_. |
+bool BitState::Search(const StringPiece& text, const StringPiece& context, |
+ bool anchored, bool longest, |
+ StringPiece* submatch, int nsubmatch) { |
+ // Search parameters. |
+ text_ = text; |
+ context_ = context; |
+ if (context_.begin() == NULL) |
+ context_ = text; |
+ if (prog_->anchor_start() && context_.begin() != text.begin()) |
+ return false; |
+ if (prog_->anchor_end() && context_.end() != text.end()) |
+ return false; |
+ anchored_ = anchored || prog_->anchor_start(); |
+ longest_ = longest || prog_->anchor_end(); |
+ endmatch_ = prog_->anchor_end(); |
+ submatch_ = submatch; |
+ nsubmatch_ = nsubmatch; |
+ for (int i = 0; i < nsubmatch_; i++) |
+ submatch_[i] = NULL; |
+ |
+ // Allocate scratch space. |
+ nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits; |
+ visited_ = new uint32[nvisited_]; |
+ memset(visited_, 0, nvisited_*sizeof visited_[0]); |
+ // VLOG(0) << "nvisited_ = " << nvisited_; |
+ |
+ ncap_ = 2*nsubmatch; |
+ if (ncap_ < 2) |
+ ncap_ = 2; |
+ cap_ = new const char*[ncap_]; |
+ memset(cap_, 0, ncap_*sizeof cap_[0]); |
+ |
+ maxjob_ = 256; |
+ job_ = new Job[maxjob_]; |
+ |
+ // Anchored search must start at text.begin(). |
+ if (anchored_) { |
+ cap_[0] = text.begin(); |
+ return TrySearch(prog_->start(), text.begin()); |
+ } |
+ |
+ // Unanchored search, starting from each possible text position. |
+ // Notice that we have to try the empty string at the end of |
+ // the text, so the loop condition is p <= text.end(), not p < text.end(). |
+ // This looks like it's quadratic in the size of the text, |
+ // but we are not clearing visited_ between calls to TrySearch, |
+ // so no work is duplicated and it ends up still being linear. |
+ for (const char* p = text.begin(); p <= text.end(); p++) { |
+ cap_[0] = p; |
+ if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+// Bit-state search. |
+bool Prog::SearchBitState(const StringPiece& text, |
+ const StringPiece& context, |
+ Anchor anchor, |
+ MatchKind kind, |
+ StringPiece* match, |
+ int nmatch) { |
+ // If full match, we ask for an anchored longest match |
+ // and then check that match[0] == text. |
+ // So make sure match[0] exists. |
+ StringPiece sp0; |
+ if (kind == kFullMatch) { |
+ anchor = kAnchored; |
+ if (nmatch < 1) { |
+ match = &sp0; |
+ nmatch = 1; |
+ } |
+ } |
+ |
+ // Run the search. |
+ BitState b(this); |
+ bool anchored = anchor == kAnchored; |
+ bool longest = kind != kFirstMatch; |
+ if (!b.Search(text, context, anchored, longest, match, nmatch)) |
+ return false; |
+ if (kind == kFullMatch && match[0].end() != text.end()) |
+ return false; |
+ return true; |
+} |
+ |
+} // namespace re2 |