Index: third_party/re2/re2/testing/dfa_test.cc |
diff --git a/third_party/re2/re2/testing/dfa_test.cc b/third_party/re2/re2/testing/dfa_test.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8e95ae4b7efb3a5825b72936ac16eff988dd26e0 |
--- /dev/null |
+++ b/third_party/re2/re2/testing/dfa_test.cc |
@@ -0,0 +1,344 @@ |
+// Copyright 2006-2008 The RE2 Authors. All Rights Reserved. |
+// Use of this source code is governed by a BSD-style |
+// license that can be found in the LICENSE file. |
+ |
+#include "util/test.h" |
+#include "util/thread.h" |
+#include "re2/prog.h" |
+#include "re2/re2.h" |
+#include "re2/regexp.h" |
+#include "re2/testing/regexp_generator.h" |
+#include "re2/testing/string_generator.h" |
+ |
+DECLARE_bool(re2_dfa_bail_when_slow); |
+ |
+DEFINE_int32(size, 8, "log2(number of DFA nodes)"); |
+DEFINE_int32(repeat, 2, "Repetition count."); |
+DEFINE_int32(threads, 4, "number of threads"); |
+ |
+namespace re2 { |
+ |
+// Check that multithreaded access to DFA class works. |
+ |
+// Helper thread: builds entire DFA for prog. |
+class BuildThread : public Thread { |
+ public: |
+ BuildThread(Prog* prog) : prog_(prog) {} |
+ virtual void Run() { |
+ CHECK(prog_->BuildEntireDFA(Prog::kFirstMatch)); |
+ } |
+ |
+ private: |
+ Prog* prog_; |
+}; |
+ |
+TEST(Multithreaded, BuildEntireDFA) { |
+ // Create regexp with 2^FLAGS_size states in DFA. |
+ string s = "a"; |
+ for (int i = 0; i < FLAGS_size; i++) |
+ s += "[ab]"; |
+ s += "b"; |
+ |
+ // Check that single-threaded code works. |
+ { |
+ //LOG(INFO) << s; |
+ Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ Prog* prog = re->CompileToProg(0); |
+ CHECK(prog); |
+ BuildThread* t = new BuildThread(prog); |
+ t->SetJoinable(true); |
+ t->Start(); |
+ t->Join(); |
+ delete t; |
+ delete prog; |
+ re->Decref(); |
+ } |
+ |
+ // Build the DFA simultaneously in a bunch of threads. |
+ for (int i = 0; i < FLAGS_repeat; i++) { |
+ Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ Prog* prog = re->CompileToProg(0); |
+ CHECK(prog); |
+ |
+ vector<BuildThread*> threads; |
+ for (int j = 0; j < FLAGS_threads; j++) { |
+ BuildThread *t = new BuildThread(prog); |
+ t->SetJoinable(true); |
+ threads.push_back(t); |
+ } |
+ for (int j = 0; j < FLAGS_threads; j++) |
+ threads[j]->Start(); |
+ for (int j = 0; j < FLAGS_threads; j++) { |
+ threads[j]->Join(); |
+ delete threads[j]; |
+ } |
+ |
+ // One more compile, to make sure everything is okay. |
+ prog->BuildEntireDFA(Prog::kFirstMatch); |
+ delete prog; |
+ re->Decref(); |
+ } |
+} |
+ |
+// Check that DFA size requirements are followed. |
+// BuildEntireDFA will, like SearchDFA, stop building out |
+// the DFA once the memory limits are reached. |
+TEST(SingleThreaded, BuildEntireDFA) { |
+ // Create regexp with 2^30 states in DFA. |
+ string s = "a"; |
+ for (int i = 0; i < 30; i++) |
+ s += "[ab]"; |
+ s += "b"; |
+ |
+ //LOG(INFO) << s; |
+ Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ int max = 24; |
+ for (int i = 17; i < max; i++) { |
+ int limit = 1<<i; |
+ int usage; |
+ //int progusage, dfamem; |
+ { |
+ testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY); |
+ Prog* prog = re->CompileToProg(limit); |
+ CHECK(prog); |
+ //progusage = m.HeapGrowth(); |
+ //dfamem = prog->dfa_mem(); |
+ prog->BuildEntireDFA(Prog::kFirstMatch); |
+ prog->BuildEntireDFA(Prog::kLongestMatch); |
+ usage = m.HeapGrowth(); |
+ delete prog; |
+ } |
+ if (!UsingMallocCounter) |
+ continue; |
+ //LOG(INFO) << StringPrintf("Limit %d: prog used %d, DFA budget %d, total %d\n", |
+ // limit, progusage, dfamem, usage); |
+ CHECK_GT(usage, limit*9/10); |
+ CHECK_LT(usage, limit + (16<<10)); // 16kB of slop okay |
+ } |
+ re->Decref(); |
+} |
+ |
+// Generates and returns a string over binary alphabet {0,1} that contains |
+// all possible binary sequences of length n as subsequences. The obvious |
+// brute force method would generate a string of length n * 2^n, but this |
+// generates a string of length n + 2^n - 1 called a De Bruijn cycle. |
+// See Knuth, The Art of Computer Programming, Vol 2, Exercise 3.2.2 #17. |
+// Such a string is useful for testing a DFA. If you have a DFA |
+// where distinct last n bytes implies distinct states, then running on a |
+// DeBruijn string causes the DFA to need to create a new state at every |
+// position in the input, never reusing any states until it gets to the |
+// end of the string. This is the worst possible case for DFA execution. |
+static string DeBruijnString(int n) { |
+ CHECK_LT(n, 8*sizeof(int)); |
+ CHECK_GT(n, 0); |
+ |
+ vector<bool> did(1<<n); |
+ for (int i = 0; i < 1<<n; i++) |
+ did[i] = false; |
+ |
+ string s; |
+ for (int i = 0; i < n-1; i++) |
+ s.append("0"); |
+ int bits = 0; |
+ int mask = (1<<n) - 1; |
+ for (int i = 0; i < (1<<n); i++) { |
+ bits <<= 1; |
+ bits &= mask; |
+ if (!did[bits|1]) { |
+ bits |= 1; |
+ s.append("1"); |
+ } else { |
+ s.append("0"); |
+ } |
+ CHECK(!did[bits]); |
+ did[bits] = true; |
+ } |
+ return s; |
+} |
+ |
+// Test that the DFA gets the right result even if it runs |
+// out of memory during a search. The regular expression |
+// 0[01]{n}$ matches a binary string of 0s and 1s only if |
+// the (n+1)th-to-last character is a 0. Matching this in |
+// a single forward pass (as done by the DFA) requires |
+// keeping one bit for each of the last n+1 characters |
+// (whether each was a 0), or 2^(n+1) possible states. |
+// If we run this regexp to search in a string that contains |
+// every possible n-character binary string as a substring, |
+// then it will have to run through at least 2^n states. |
+// States are big data structures -- certainly more than 1 byte -- |
+// so if the DFA can search correctly while staying within a |
+// 2^n byte limit, it must be handling out-of-memory conditions |
+// gracefully. |
+TEST(SingleThreaded, SearchDFA) { |
+ // Choice of n is mostly arbitrary, except that: |
+ // * making n too big makes the test run for too long. |
+ // * making n too small makes the DFA refuse to run, |
+ // because it has so little memory compared to the program size. |
+ // Empirically, n = 18 is a good compromise between the two. |
+ const int n = 18; |
+ |
+ Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n), |
+ Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ |
+ // The De Bruijn string for n ends with a 1 followed by n 0s in a row, |
+ // which is not a match for 0[01]{n}$. Adding one more 0 is a match. |
+ string no_match = DeBruijnString(n); |
+ string match = no_match + "0"; |
+ |
+ // The De Bruijn string is the worst case input for this regexp. |
+ // By default, the DFA will notice that it is flushing its cache |
+ // too frequently and will bail out early, so that RE2 can use the |
+ // NFA implementation instead. (The DFA loses its speed advantage |
+ // if it can't get a good cache hit rate.) |
+ // Tell the DFA to trudge along instead. |
+ FLAGS_re2_dfa_bail_when_slow = false; |
+ |
+ int64 usage; |
+ int64 peak_usage; |
+ { |
+ testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY); |
+ Prog* prog = re->CompileToProg(1<<n); |
+ CHECK(prog); |
+ for (int i = 0; i < 10; i++) { |
+ bool matched, failed = false; |
+ matched = prog->SearchDFA(match, NULL, |
+ Prog::kUnanchored, Prog::kFirstMatch, |
+ NULL, &failed, NULL); |
+ CHECK(!failed); |
+ CHECK(matched); |
+ matched = prog->SearchDFA(no_match, NULL, |
+ Prog::kUnanchored, Prog::kFirstMatch, |
+ NULL, &failed, NULL); |
+ CHECK(!failed); |
+ CHECK(!matched); |
+ } |
+ usage = m.HeapGrowth(); |
+ peak_usage = m.PeakHeapGrowth(); |
+ delete prog; |
+ } |
+ re->Decref(); |
+ |
+ if (!UsingMallocCounter) |
+ return; |
+ //LOG(INFO) << "usage " << usage << " " << peak_usage; |
+ CHECK_LT(usage, 1<<n); |
+ CHECK_LT(peak_usage, 1<<n); |
+} |
+ |
+// Helper thread: searches for match, which should match, |
+// and no_match, which should not. |
+class SearchThread : public Thread { |
+ public: |
+ SearchThread(Prog* prog, const StringPiece& match, |
+ const StringPiece& no_match) |
+ : prog_(prog), match_(match), no_match_(no_match) {} |
+ |
+ virtual void Run() { |
+ for (int i = 0; i < 2; i++) { |
+ bool matched, failed = false; |
+ matched = prog_->SearchDFA(match_, NULL, |
+ Prog::kUnanchored, Prog::kFirstMatch, |
+ NULL, &failed, NULL); |
+ CHECK(!failed); |
+ CHECK(matched); |
+ matched = prog_->SearchDFA(no_match_, NULL, |
+ Prog::kUnanchored, Prog::kFirstMatch, |
+ NULL, &failed, NULL); |
+ CHECK(!failed); |
+ CHECK(!matched); |
+ } |
+ } |
+ |
+ private: |
+ Prog* prog_; |
+ StringPiece match_; |
+ StringPiece no_match_; |
+}; |
+ |
+TEST(Multithreaded, SearchDFA) { |
+ // Same as single-threaded test above. |
+ const int n = 18; |
+ Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n), |
+ Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ string no_match = DeBruijnString(n); |
+ string match = no_match + "0"; |
+ FLAGS_re2_dfa_bail_when_slow = false; |
+ |
+ // Check that single-threaded code works. |
+ { |
+ Prog* prog = re->CompileToProg(1<<n); |
+ CHECK(prog); |
+ SearchThread* t = new SearchThread(prog, match, no_match); |
+ t->SetJoinable(true); |
+ t->Start(); |
+ t->Join(); |
+ delete t; |
+ delete prog; |
+ } |
+ |
+ // Run the search simultaneously in a bunch of threads. |
+ // Reuse same flags for Multithreaded.BuildDFA above. |
+ for (int i = 0; i < FLAGS_repeat; i++) { |
+ //LOG(INFO) << "Search " << i; |
+ Prog* prog = re->CompileToProg(1<<n); |
+ CHECK(prog); |
+ |
+ vector<SearchThread*> threads; |
+ for (int j = 0; j < FLAGS_threads; j++) { |
+ SearchThread *t = new SearchThread(prog, match, no_match); |
+ t->SetJoinable(true); |
+ threads.push_back(t); |
+ } |
+ for (int j = 0; j < FLAGS_threads; j++) |
+ threads[j]->Start(); |
+ for (int j = 0; j < FLAGS_threads; j++) { |
+ threads[j]->Join(); |
+ delete threads[j]; |
+ } |
+ delete prog; |
+ } |
+ re->Decref(); |
+} |
+ |
+struct ReverseTest { |
+ const char *regexp; |
+ const char *text; |
+ bool match; |
+}; |
+ |
+// Test that reverse DFA handles anchored/unanchored correctly. |
+// It's in the DFA interface but not used by RE2. |
+ReverseTest reverse_tests[] = { |
+ { "\\A(a|b)", "abc", true }, |
+ { "(a|b)\\z", "cba", true }, |
+ { "\\A(a|b)", "cba", false }, |
+ { "(a|b)\\z", "abc", false }, |
+}; |
+ |
+TEST(DFA, ReverseMatch) { |
+ int nfail = 0; |
+ for (int i = 0; i < arraysize(reverse_tests); i++) { |
+ const ReverseTest& t = reverse_tests[i]; |
+ Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL); |
+ CHECK(re); |
+ Prog *prog = re->CompileToReverseProg(0); |
+ CHECK(prog); |
+ bool failed = false; |
+ bool matched = prog->SearchDFA(t.text, NULL, Prog::kUnanchored, Prog::kFirstMatch, NULL, &failed, NULL); |
+ if (matched != t.match) { |
+ LOG(ERROR) << t.regexp << " on " << t.text << ": want " << t.match; |
+ nfail++; |
+ } |
+ delete prog; |
+ re->Decref(); |
+ } |
+ EXPECT_EQ(nfail, 0); |
+} |
+ |
+} // namespace re2 |