OLD | NEW |
(Empty) | |
| 1 // Copyright 2006 The RE2 Authors. All Rights Reserved. |
| 2 // Use of this source code is governed by a BSD-style |
| 3 // license that can be found in the LICENSE file. |
| 4 |
| 5 // DESCRIPTION |
| 6 // |
| 7 // SparseSet<T>(m) is a set of integers in [0, m). |
| 8 // It requires sizeof(int)*m memory, but it provides |
| 9 // fast iteration through the elements in the set and fast clearing |
| 10 // of the set. |
| 11 // |
| 12 // Insertion and deletion are constant time operations. |
| 13 // |
| 14 // Allocating the set is a constant time operation |
| 15 // when memory allocation is a constant time operation. |
| 16 // |
| 17 // Clearing the set is a constant time operation (unusual!). |
| 18 // |
| 19 // Iterating through the set is an O(n) operation, where n |
| 20 // is the number of items in the set (not O(m)). |
| 21 // |
| 22 // The set iterator visits entries in the order they were first |
| 23 // inserted into the array. It is safe to add items to the set while |
| 24 // using an iterator: the iterator will visit indices added to the set |
| 25 // during the iteration, but will not re-visit indices whose values |
| 26 // change after visiting. Thus SparseSet can be a convenient |
| 27 // implementation of a work queue. |
| 28 // |
| 29 // The SparseSet implementation is NOT thread-safe. It is up to the |
| 30 // caller to make sure only one thread is accessing the set. (Typically |
| 31 // these sets are temporary values and used in situations where speed is |
| 32 // important.) |
| 33 // |
| 34 // The SparseSet interface does not present all the usual STL bells and |
| 35 // whistles. |
| 36 // |
| 37 // Implemented with reference to Briggs & Torczon, An Efficient |
| 38 // Representation for Sparse Sets, ACM Letters on Programming Languages |
| 39 // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69. |
| 40 // |
| 41 // For a generalization to sparse array, see sparse_array.h. |
| 42 |
| 43 // IMPLEMENTATION |
| 44 // |
| 45 // See sparse_array.h for implementation details |
| 46 |
| 47 #ifndef RE2_UTIL_SPARSE_SET_H__ |
| 48 #define RE2_UTIL_SPARSE_SET_H__ |
| 49 |
| 50 #include "util/util.h" |
| 51 |
| 52 namespace re2 { |
| 53 |
| 54 class SparseSet { |
| 55 public: |
| 56 SparseSet() |
| 57 : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL) {} |
| 58 |
| 59 SparseSet(int max_size) { |
| 60 max_size_ = max_size; |
| 61 sparse_to_dense_ = new int[max_size]; |
| 62 dense_ = new int[max_size]; |
| 63 // Don't need to zero the memory, but do so anyway |
| 64 // to appease Valgrind. |
| 65 if (RunningOnValgrind()) { |
| 66 for (int i = 0; i < max_size; i++) { |
| 67 dense_[i] = 0xababababU; |
| 68 sparse_to_dense_[i] = 0xababababU; |
| 69 } |
| 70 } |
| 71 size_ = 0; |
| 72 } |
| 73 |
| 74 ~SparseSet() { |
| 75 delete[] sparse_to_dense_; |
| 76 delete[] dense_; |
| 77 } |
| 78 |
| 79 typedef int* iterator; |
| 80 typedef const int* const_iterator; |
| 81 |
| 82 int size() const { return size_; } |
| 83 iterator begin() { return dense_; } |
| 84 iterator end() { return dense_ + size_; } |
| 85 const_iterator begin() const { return dense_; } |
| 86 const_iterator end() const { return dense_ + size_; } |
| 87 |
| 88 // Change the maximum size of the array. |
| 89 // Invalidates all iterators. |
| 90 void resize(int new_max_size) { |
| 91 if (size_ > new_max_size) |
| 92 size_ = new_max_size; |
| 93 if (new_max_size > max_size_) { |
| 94 int* a = new int[new_max_size]; |
| 95 if (sparse_to_dense_) { |
| 96 memmove(a, sparse_to_dense_, max_size_*sizeof a[0]); |
| 97 if (RunningOnValgrind()) { |
| 98 for (int i = max_size_; i < new_max_size; i++) |
| 99 a[i] = 0xababababU; |
| 100 } |
| 101 delete[] sparse_to_dense_; |
| 102 } |
| 103 sparse_to_dense_ = a; |
| 104 |
| 105 a = new int[new_max_size]; |
| 106 if (dense_) { |
| 107 memmove(a, dense_, size_*sizeof a[0]); |
| 108 if (RunningOnValgrind()) { |
| 109 for (int i = size_; i < new_max_size; i++) |
| 110 a[i] = 0xababababU; |
| 111 } |
| 112 delete[] dense_; |
| 113 } |
| 114 dense_ = a; |
| 115 } |
| 116 max_size_ = new_max_size; |
| 117 } |
| 118 |
| 119 // Return the maximum size of the array. |
| 120 // Indices can be in the range [0, max_size). |
| 121 int max_size() const { return max_size_; } |
| 122 |
| 123 // Clear the array. |
| 124 void clear() { size_ = 0; } |
| 125 |
| 126 // Check whether i is in the array. |
| 127 bool contains(int i) const { |
| 128 DCHECK_GE(i, 0); |
| 129 DCHECK_LT(i, max_size_); |
| 130 if (static_cast<uint>(i) >= max_size_) { |
| 131 return false; |
| 132 } |
| 133 // Unsigned comparison avoids checking sparse_to_dense_[i] < 0. |
| 134 return (uint)sparse_to_dense_[i] < (uint)size_ && |
| 135 dense_[sparse_to_dense_[i]] == i; |
| 136 } |
| 137 |
| 138 // Adds i to the set. |
| 139 void insert(int i) { |
| 140 if (!contains(i)) |
| 141 insert_new(i); |
| 142 } |
| 143 |
| 144 // Set the value at the new index i to v. |
| 145 // Fast but unsafe: only use if contains(i) is false. |
| 146 void insert_new(int i) { |
| 147 if (static_cast<uint>(i) >= max_size_) { |
| 148 // Semantically, end() would be better here, but we already know |
| 149 // the user did something stupid, so begin() insulates them from |
| 150 // dereferencing an invalid pointer. |
| 151 return; |
| 152 } |
| 153 DCHECK(!contains(i)); |
| 154 DCHECK_LT(size_, max_size_); |
| 155 sparse_to_dense_[i] = size_; |
| 156 dense_[size_] = i; |
| 157 size_++; |
| 158 } |
| 159 |
| 160 // Comparison function for sorting. |
| 161 // Can sort the sparse array so that future iterations |
| 162 // will visit indices in increasing order using |
| 163 // sort(arr.begin(), arr.end(), arr.less); |
| 164 static bool less(int a, int b) { return a < b; } |
| 165 |
| 166 private: |
| 167 int size_; |
| 168 int max_size_; |
| 169 int* sparse_to_dense_; |
| 170 int* dense_; |
| 171 |
| 172 DISALLOW_EVIL_CONSTRUCTORS(SparseSet); |
| 173 }; |
| 174 |
| 175 } // namespace re2 |
| 176 |
| 177 #endif // RE2_UTIL_SPARSE_SET_H__ |
OLD | NEW |